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Artificial intelligence (AI) and algorithmic decision 

making are having a profound impact on our 

daily lives

high-stakes applications 

healthcare, business, government, education, justice, …

become essential to make these systems safe, reliable, 

and trustworthy

Introduction



M
L 

–
P
A

C
 l
e
a

rn
in

g

Attention from the government and different 

scientific communities

European Union (EU) 

ethical guidelines for trustworthy AI to govern and facilitate 

the development and working of AI systems

General Data Protection Regulation (GDPR)

“right to explanations” for AI decisions

National Institute of Standards and Technology (NIST)

framework to measure and increase user trust in AI systems

Trustworthy AI
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Attention from the government and different 

scientific communities

U.S. Government Accountability Office (GAO) 

framework for the accountability and responsible use of AI

Defense Advanced Research Project Agency (DARPA)

launched a program known as Explainable Artificial 

Intelligence (XAI)

Trustworthy AI
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AI systems can fail and show dangerous

consequences for humans

COMPAS algorithm

used across the nation to predict the risk of criminal

recidivism

is biased against black people 

Facial recognition software 

tagged black people with inappropriate labels because of 

the low quality of sample data used to train the system  

Trustworthy AI
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Resume screening 

used by a major tech company 

biased against women

Self-driving car 

killed a pedestrian on the road when its algorithm 

malfunctioned 

did not respond when its sensors detected a pedestrian 

in the way

Trustworthy AI
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EU presented three guidelines for AI

lawful

AI system’s development, deployment, and use should follow 

all the applicable laws and regulations

ethical

AI system should respect the ethical principles and guidelines

of humans

robust

AI system should be technically robust while being ethical

and lawful

EU guidelines
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EU guidelines

Relations among tustworthy based concepts
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Accuracy and interpretability 

Balance between accuracy and interpretability
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Main trustworthy AI requirements

Fairness

free from any bias and discrimination

Explainability

understand the reasons that led to a decision

Accountability 

monitoring decision-making algorithms to ensure that they do not cause any harm

Privacy

protect the privacy of the data to both avoid harmful consequences and increase the 
users’ trust in the system

Acceptance

increase the acceptance and trust for AI-based decision-making systems by carefully 
evaluating the system

Trustworthy AI requirements
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Bias

Data

the data on which the system is trained is biased

data does not represent a clear picture of reality

Model

the algorithm itself introduces bias

wrong objective function that does not capture the 

fundamental logic for the prediction

Evaluation

wrong evaluation metrics were used to evaluate the model

Bias
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pre-processing

in-processing 

post-processing 

Bias mitigation solutions
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pre-processing

pre-processing the data to make it free from any bias 

and discrimination 

Examples 

bias mitigation method for word embedding

approximates the effect of removing a small sample of training 

data based on the bias of the resulting system

radioactive data labeling

labels the training dataset images with an identifiable mark to 

ensure biased data traceability

Bias mitigation solutions
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in-processing 

mitigate bias by modifying the decision making 

algorithms

Example

adversarial learning

uses the concept of maximizing predictor accuracy while 

minimizing the ability to predict protected attributes

Bias mitigation solutions
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post-processing

mitigating bias by using the output of the predictors 

through post-processing

Example 

removes bias by adjusting the learned predictor to balance 

among supervised learning methods

Bias mitigation solutions
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decision making systems 

essential for different stakeholders involved with these 

systems to understand the reasons that led to a decision

communicate the reasoning for the AI system’s decisions 

to different stakeholders

helps the system designers detect unknown 

vulnerabilities and correct errors and policymakers to 

design better laws to govern the system

Explainability
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eXplainable Artificial Intelligence (XAI) techniques 

are aimed at producing AI models with a good 

interpretability-accuracy 

building white/gray-box ML models 

they are interpretable by design (at least at some degree) 

while achieving high accuracy 

improving the explainability of black-box models 

endowing black-box models with a minimum level 

of interpretability when white/gray-box models are not 

able to achieve an admissible level of accuracy

eXplainable Artificial Intelligence
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Explainability 

Grad-Cam application example (https://github.com/jacobgil/pytorch-grad-

cam?tab=readme-ov-file) 
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There are two terminologies by which we can try 

to elucidate a Deep Neural Networks (DNN) 

model

interpretability

interface that gives additional information or explanations 

that are essential for interpreting an AI system’s underlying 

functioning  

explainability 

insight into the DNN’s decision to the end-user in order to 

build trust that the AI is making correct and non-biased 

decisions based on facts

Deep Neural Networks 
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Categories

ex-ante

explanations is to establish the initial trust in the system

ex-post

explaining the features and circumstances that lead to a 

particular decision

Explainability
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Explainability

A comparison of white-box, gray-box, and black-box models.
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pre-modeling approches 

transparency and explainability by explaining the 

datasets on which the system is trained

Examples

visualization techniques to better understand the data 

before using it

dataset standardization methods 

labeling and data sheet creation will facilitate communication 

and understanding between different entities using them

XAI  approches 
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In-modeling approches 

making interpretable models

Examples 

decision trees, linear models, rule-based models

graph structure of trees 

internal nodes represent tests on features and leaf nodes 

represent class labels

decision/rule sets 

association rules like an if-then rule or m-of-n rule to generate 
classification rules

Disadvantage 

they are only usable when the size of the classification rules 
and the dimensionality of the features are within a human-
understandable range

XAI  approches 
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Post-modeling approches 

building proxy models on top of black-box/complex 

models

Categories 

feature importance 

example based

rule-based 

visualization-based

XAI  approches 
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Aim

explainability by assigning feature importance values to the input 
variables

which features played a more critical role in the decision-making process

Examples
Local Interpretable Model-agnostic Explanations (LIME)

highlighting essential features that led to the decision

Layerwise Relevance Propagation (LRP)

for image classification algorithms, which includes interpretability by 
computing every pixel’s contribution to the prediction made by the classifier 
(heat maps)

Automated Concept-based Explanation (ACE)

SHapely Additive exPlanations (SHAP)

interpretability by assigning feature scores to each attribute for different 
predictions

Feature importance 
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Aim

provide explainability by extracting useful information 
from the model 

are usually applied to artificial neural networks

useful information is extracted using the hidden layers to 
provide interpretability

Examples 

Anchors

algorithms to extract IF-THEN rules that highlight the 
characteristics of an input instance that are sufficient for a 
classifier to make a prediction

model compression

algorithms to extract Fuzzy IF-THEN rules 

Rule based
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Aim

explainability by visualizing the internal working of 

opaque AI systems

Examples 

explaination by visualizing how the change in the 

feature importance affects the model performance

contribution of the evidence for the final decision to 

provide explainability to classifiers

Visualization based
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XAI strategies

Four-axes XAI methodology (S. Ali et al. 2023)
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XAI axes

Research questions for explanation 
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Aim

involves a group of techniques aimed at better 

comprehending the datasets used in the training and 

design of AI models

Main aspects to consider 

Exploratory Data Analysis (EDA)

explainable feature engineering

dataset description standardization

dataset summarizing methodologies

knowledge graphs

Data explainability



M
L 

–
 P

A
C

 l
e
a

rn
in

g

Aim

compile a list of the most significant characteristics of a 

dataset

dimensionality, mean, standard deviation, range, and 

missing samples 

e.g., Google Facets 

Example 

UCI Census Income data

basic supervised binary classification task in which a model 

is used to distinguish whether an employee has an annual 

income over 50K or not

Exploratory Data Analysis
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Google Facets – UCI Census 

All 16282 training data points that show the relationship between one feature (Age) 

and another feature (Occupation), then faceting is performed in a different dimension 

according to a discrete feature (Work class)
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Google Facets – UCI Census 

Six integer-type statistical values from the UCI Census datasets

The table displays one categorical (string) type feature out of the nine features in

the UCI Census dataset. A model trained and tested on such data would provide an 

incorrect assessment as a result of the label imbalance problem
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Parallel Coordinate Plots

It can be seen in the distinct cluster, the features of age and education have

a significant role in determining a given class. In the class prediction, the capital gain,

on the other hand, does not create separation boundaries. Thus, this feature may be

left out of the classification task. The green line represents the target value > 50K, and

the blue line denotes income value < 50K.

z-
sc

o
re
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Projections 

t-SNE: Produces a graph with well-defined clusters and a small number of

integer data points. To get a better separation between the clusters of the UCI Census

Income dataset, several distance measures are used: (a) Mahalanobis, (b) Cosine, (c)

Chebyshev, and (d) Euclidean. Further tools are Embedding Projector toolbox and 

Uniform Manifold Approximation and Projection
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Common approaches

domain-specific 

rely on domain expert knowledge as well as insights gained 
via EDA to extract and identify significant features

Example 

binary classifier on satellite images to distinguish cloudy 
pixels from ice/snow pixels that looked quite similar

model-based methods

use of a number of mathematical models to determine the 
underlying structure of a dataset

Example

Clustering, dictionary learning, disentangled representation 
learning

Explainable feature engineering
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Standard dataset descriptions

Datasheets for Datasets, Dataset Nutrition Labels, Data 

Declarations for Natural Language Processing (NLP)

Example

dataset document that includes information on many 

modules

metadata, statistics, pair plots, the probabilistic model, 

provenance, and ground truth correlations

Dataset description 



M
L 

–
 P

A
C

 l
e
a

rn
in

g

Aim

generates predictions for a given input and compares 

them to training samples/cases using a distance metric

Example

document summarization, scene summarizing, prototype 

selection, data squashing

Dataset summarizing
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Aim

modeling entities and their relationships by means of a 

directed, edge-labeled graph, often organizing them in an 

ontological schema

Examples

Doctor XAI 

creates an agnostic XAI approach for ontology-linked data 

classification

Data Mining Ontology for Grid Programming (DAMON) 

model for data mining approaches and existing tools

KD-DONTO 

emphasizes the development of data mining techniques

Knowledge graphs 
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Aim

incorporating physical equations and constraints into 

neural networks for modeling complex and non-linear 

processes

Examples 

Earth system science, two-step process to improve the 

spatio-temporal resolution of turbulent flows

Physics-informed neural network



M
L 

–
 P

A
C

 l
e
a

rn
in

g

Aim

select the modeling technique from a set of techniques 
that are deemed interpretable (white-box models)

phases to ensure interpretability

Algorithmic transparency 

Simulatability

Decomposability

Examples

Decision Tree, Decision Sets, Rule set, Case-based 
reasoning, Interpretable Fuzzy Systems, Generalized 
Additive Models

Model explainability 
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Aim

combine an inherently interpretable modeling technique 

with a sophisticated black-box method

Examples

Deep k-Nearest Neighbors (DkNN) 

K-NN inference on the hidden representation of the training 

dataset that is learned via layers of a DNN

Self-Explaining Neural Networks (SENN)

generalize a linear classifier by utilizing NNs to learn its 

features, their associated coefficients, and how the networks 

are aggregated into a prediction

Hybrid explainable models 
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Examples

BagNets bag-of-features model 

the features are learned using a DNN

Neural-symbolic (NeSy) models

X-NeSyL (eXplainable Neural Symbolic Learning) via 

knowledge graphs

Finite State Automata 

Neuro-Fuzzy models 

Hybrid explainable models 
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DkNN

Example of DkNN
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Aim

model may be trained to give both a prediction and an 
explanation 

Examples

Teaching Explanations for Decisions (TED) framework 

supplement the training dataset by including a collection of 
features, and output, as well as the user’s reasoning for that 
decision, which is called an explanation, in each sample

Rationalizing Neural Predictions (RNP) model

which consist of two parts (both trained simultaneously),  a 
generator and an encoder

in order to make a prediction, the generator uses the 
distribution of input text segments as potential explanation

Joint prediction and explanation 
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TED

Example of TED
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Aim

by adjusting model architectures, it is also possible to 
improve model explainability

Examples

This Looks Like That

Explainable Deep Network (EDN) architecture for image 
recognition

how people explain classification reasoning in terms of 
different parts of an image being compared to a collection 
of learned image component prototypes

Attention mechanisms 

provide some degree of explainability and they have 
altered the way how DL algorithms are used (Attention Map) 

Architectural adjustments 
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This Look Like That

Example of This Look Like That

Prototypes Layer
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Aim

enhance the prediction performance of AI models, and 
may also be used to increase model explainability

Examples

Tree Regularization

encourage people to learn a model with a decision 
boundary that can be well approximated using a tiny 
Decision Tree, allowing humans to simulate the predictions

Saliency learning  

expert annotations concentrate on important portions of the 
input rather than irrelevant parts, as well as having 
annotations at the word embedding level rather than at the 
input dimension level

Regularization 
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Saliency learning

Example of Saliency learning
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Aim

explain black-box models  

Categories 

attribution methods

visualization methods

example-based explanation methods

game theory methods 

knowledge extraction methods

neural methods

Post-hoc explainability 
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Post-hoc explainability 

Taxonomy of post-hoc explainability 
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Aim

each pixel of the input image is given an attribution 

value known as its relevance or contribution

Estimate the Relevance Score (RS) 

Attribution Map 

Families 

Deep Taylor Decomposition (DTD)

Perturbation Methods

Backpropagation Methods

DeepLift

Attribution models 
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Deep Taylor Decomposition 

Example of DTD

Taylor series expansion 

RS of im to the 

output Sc

Scores
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Aim

calculate the attribution of a training instance feature 

directly by deleting, masking, or changing the input 

instance

a forward pass on the modified input is executed 

before comparing the obtained results to the original 

output

Pertubation methods
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Surrogation

a distinct model is created to explain the black-box 

decision either locally or globally

the model created is intrinsically interpretable

Pertubation methods

Fidelity score

Surrogate

Black-box
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Locally Interpretable Model-Agnostic Explainer

local surrogate models to explain individual predictions 

of black-box ML techniques

creates a new dataset using altered samples and the 

black-box model’s predictions

LIME

interpretable model

explanation 

complexity measure

(e.g., depth of the 

decision tree)

model being explained
proximity measure between the

pertubed sample x and 𝜙 

measure of the unfaithfulness of F 

in approximating 𝑓 in the locality

defined by 𝜋𝜙
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LIME

The coloured areas correspond to decision regions for a complex binary classification 

model. The black cross indicates the instance (observation) of interest. Dots correspond to 

artificial data around the instance of interest. The dashed line represents a simple linear 

model fitted to the artificial data. The simple model “explains” local behavior of the 

black-box model around the instance of interest.
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Local Rule-based Explanation

constructs a simple interpretable predictor 

first using an ad-hoc ‘‘genetic algorithm’’ to generate a 

balanced set of neighbor instances of the given 

instance 𝑥

a decision tree classifier is extracted

LORE
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Aim

variant from LIME that looks for a decision rule that will 

explain individual predictions of any black-box 

classification model

Anchors

rule (anchor)

precision threshold distribution of the x’s neighbors

model to be explained 
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Deconvolutional network 

DeconvNet - Every layer in the ConvNet has a DeconvNet linked to it, allowing

a continuous route back to the original input. DeconvNet can rebuild an 

approximate replica of the feature identified by ConvNet.
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Aim

in one forward and one backward pass to the DNN, 

backpropagation methods calculate the attribution 

values for all the input features

Main methods

Class Activation Map

Vanilla-based gradient 

Backpropagation methods 
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Aim

Global Average Pooling (GAP) as a structural 

regularizer in a CNN to reduce the number of 

parameters used while retaining exceptional 

performance 

Class Activation Map 

activation map

class probability

Map 
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CAM

The spatial average of each unit’s feature map, from the last possible CL, is 

generated by the GAP. The final result is generated using a weighted sum of the 

spatial data.

The discriminative areas, distinct to each class, are highlighted in the CAM
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Gradient-weighted CAM

visual explanations for any model in the CNN family 

without needing to go through architectural 

modifications or retraining

assigns significance ratings to each neuron for the given 

target class using the gradient information 

backpropagated to the final convolutional layer

Grad-CAM

Grad-CAM localization map

significant weights matrix for the neurons

class score

Rectified Convolutional Feature Maps
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Grad-CAM

Given an image and a class of interest (e.g., ‘tiger cat’ or any other type of differentiable 

output) as input, we forward propagate the image through the CNN part of the model and 

then through task-specific computations to obtain a raw score for the category. The 

gradients are set to zero for all classes except the desired class (tiger cat), which is set to 

1. This signal is then backpropagated to the rectified convolutional feature maps of 

interest, which we combine to compute the coarse Grad-CAM localization (blue heatmap) 

which represents where the model has to look to make the particular decision. Finally, we 

pointwise multiply the heatmap with guided backpropagation to get Guided Grad-CAM 

visualizations which are both high-resolution and concept-specific. 
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Image Specific Class Saliency (Saliency Maps) 

the loss function’s gradient is calculated with regard to 

the input pixels 

For DNN the scoring function is nonlinear 

Vanilla Gradient

class relevance score pixels of image

network’s weight 

bias

Saliency map for an RGB image
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Saliency Map

Examples of saliency maps 
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Aim

frames the topic of significance in terms of deviations 

from a reference condition which is selected by the user

DeepLIFT

Layer interested neuron i

reference condition 

For all the layers
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Aim

Understanding an AI model, by visualizing its 

representations to investigate the underlying patterns

Examples  

Partial Dependence Plot

Individual Conditional Expectations

Accumulated Local Effects

Visualization methods 
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Aim

connection between an individual feature and the 

target

Partial Dependence Plot
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Aim

connection between the target and a single feature, 

rather than the whole model

Individual Conditional Expectations
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Aim

case-based explanations

Examples  

prototypes and criticisms

counterfactuals

adversarial examples

Example-based explanation methods
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Prototype 
are single instances with the capability to represent the 
entire dataset

Criticism 
is a data instance that is not included in the collection of 
prototypes because it is distinct enough for representing 
complimentary insights

Maximum Mean Discrepancy
compares the data distribution with the distribution of 
selected prototypes

firstly, the user defines the number of prototypes and criticisms to 
be identified

prototypes and criticisms are discovered using a greedy search 
technique

Prototypes and criticisms



M
L 

–
 P

A
C

 l
e
a

rn
in

g
Prototypes and criticisms

Prototypes 

Criticisms
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Aim 

‘‘contrary-to-fact’’ examples

Loss function 

Counterfactuals

instance of interest 𝑥, a counterfactual 𝑥′, and 

the desired outcome 𝑦′

Manhattan distance
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Counterfactuals

small set of segments that, in case of removal, 

alters the classification. 
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Counterfactuals

Post-hoc methdologies comparison
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Aim 
how much each player in a coalition game contributes (Lloyd 
Shapley, 1953)

game

single instance of a dataset’s prediction in a task

gain

difference between the actual prediction for the given prediction and 
the average of predictions for all instances in the dataset

players

are the instance’s feature values who work together to obtain the 
gain

the Shapely value of a feature tells us how much it contributes to a 
particular prediction outcome

Examples
Shapley Additive Explanation (SHAP)

Game theory methods 
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Aim 

is a unified way to understand the output of any ML 
model

explaining individual predictions using the coalition 
game’s best Shapley values 

a player can be represented by a single feature value, 
such as in tabular data 

a player can also be made up of a collection of 
feature values

pixels can be grouped into superpixels, and the information 
to make the prediction that describes the image is spread 
among them

The Shapley value explanation is an Additive Feature 
Attribution approach

SHAP
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Explanation

SHAP

the feature attribution for 𝑖th feature is 𝛷𝑖, the maximum size of the coalition is M, 

the coalition vector (the simplified features) is denoted by Z ∈ {0, 1}M

Where 1 in the coalition vector indicates that the relevant feature value

is ‘‘present’’, whereas 0 indicates that the feature is ‘‘missing’’.
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SHAP

Red pixels represent positive SHAP values that increase the probability of the class, 

while blue pixels represent negative SHAP values the reduce the probability of the 

class. 



M
L 

–
 P

A
C

 l
e
a

rn
in

g

Aim 

describe how black-box ML models behave internally

Examples

Rule extraction 

Model Distillation 

Knowledge extraction methods
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Aim 

produces an understandable but rough approximation of a 
network’s predicted behavior from the training data and the 
trained ANN

Two main categories 

Propositional/Boolean logic

Non-conventional logic

Rule extraction techniques 

Fuzzy modeling

Genetic programming 

Boolean rule extracion 

Rule extraction 
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Relation between the extracted rule and the trained 
NN architecture

Three distinct types of methods

Decompositional methods 

operate on the neuron level rather than over the whole NN design

Pedagogical methods 

operate disregarding the NN architectural design

Eclectic methods 

combination of decompositional and pedagogical methods

Rule extraction 
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Aim 

transferring information (dark knowledge) from a 

teacher network (e.g., a DNN) to a student network 

(e.g., a shallow NN) via model compression

Interpretable Mimic Learning 

method for learning phenotype features that are 

interpretable for generating robust predictions while 

imitating the performance of black-box DL models

DarkSight

a visualization technique for understanding the 

predictions of black-box

Model distillation 
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Aim 

explain specific predictions, simplify neural networks, or 

visualize the features and concepts that a neural 

network has learned

Examples

Influence Methods

Concept Methods

Neural Methods 
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Aim 

By altering the input or internal elements and analyzing 

which ones (and how much) change model performance, 

these methods assess the significance of a feature

Three different techniques in the literature for 

determining the significance of an input variable

feature importance

Layer-wise Relevance Propagation (LRP)

Sensitivity Analysis (SA)

Influence methods
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Aim 

is possible to assign a degree of significant value to 

each feature

especially useful when the selected instance has a 

significant impact on model performance

Feature importance is calculated using the change 

in the model’s error seen in the feature 

permutation process 

Leave-One-Covariate-Out

Model Class Reliance

Feature importance 
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Feature importance 

A linear model was trained on two cases, one with unimportant features and

one without unimportant features. In the instance, without unimportant 

features, the slope produced by the model changes significantly in contrast to 

the instance with unimportant features.
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Aim 

Starting from a network’s output layer and 

backpropagating up to the input layer, LRP 

redistributes the prediction functions in their opposite 

order 

Layer-wise Relevance Propagation



M
L 

–
 P

A
C

 l
e
a

rn
in

g

Aim 

most important input features are those with the 

greatest impact on the output

often used to check for model trustworthiness and 

stability, as a tool for identifying or removing irrelevant 

input features 

Sensitivity analysis 
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Aim 

human-friendly explanations of the internal states of 

NNs globally

Concept Activation Vectors

CAVs are created by teaching a linear classifier to discriminate between the activation 

generated by a concept’s instances and the activations caused by examples at the 𝑚-th 

layer. 
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Slot Attention-based Classifier for Explainable 

Image Recognition

SCOUTER's explanation is involved in the final 

confidence for each category, offering more intuitive 

interpretation 

all the categories have their corresponding positive or 

negative explanation

"why the image is of a certain category" or "why the image 

is not of a certain category"

SCOUTER
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SCOUTER

Positive and negative explanations. The images from top to down are from the test sets 

of MNIST, Con-text, and CUB-200 datasets. The models trained with positive (+) and 

negative (−) SCOUTER losses can respectively highlight the positive and negative 

supports, based on which one can reason why or why not the images are classified into 

the corresponding categories. 
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SCOUTER

Classification using SeaThru with SCOUTER - a. Classification of a real

plastic bottle image; b. Classification of a real metal can image; c. Classification of 

a synthetic plastic bag image.

G. Mellone et al., Exploring the Effectiveness of Slot Attention-based Classifier in Detecting Underwater 

Marine Litter: A Study, Smart Innovation, Systems and Technologies
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Tracking vision transformer with Class and 

Regression Tokens

visual object tracking model based on siamese 

network and vision transformer

learn a robust characterization of the problem with an 

explainable architecture, understanding the motivation 

of the choice of the neural network

ViTCRT
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ViTCRT

Tracking vision transformer with class and regression tokens

E. Di Nardo et al., Tracking vision transformer with class and regression tokens,

Information Sciences, Vol. 619, p.p. 276-287, 2023

Kristan, M. et al., The Tenth Visual Object Tracking VOT2022 Challenge Results, ECCV 2022. Lecture Notes in 

Computer Science, vol 13808
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Visual tracking

Outputs for sequence BlurCar1 in OTB100 with the attention of two tokens overlaying the 

image. First row: Bounding Box outputs. Second row: Regression token attention. Third row: 

Classification token attention.

https://www.sciencedirect.com/topics/engineering/bounding-box
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Visual tracking

Outputs for sequence Group1_2 in UAV123 with the attention of two tokens overlaying the 

image. First row: Bounding Box outputs. Second row: Regression token attention. Third row: 

Classification token attention.

https://www.sciencedirect.com/topics/engineering/bounding-box
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Perceptual Learning for On-Line Visual Object 

Tracking

Perceptual Learning for on-line learning in combination 

with ViTCRT for learning multiple sub-tasks 

Perceptual Learning is the process by which an 

individual’s ability to recognize or discriminate between 

stimuli improves through practice or experience

On-line VOT

D. De Cicco et al., Perceptual Learning for On-Line Visual Object Tracking, Smart Innovation, Systems and 

Technologies
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On-line VOT

D. De Cicco et al., Perceptual Learning for On-Line Visual Object Tracking, Smart Innovation, Systems and 

Technologies
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Discrete Diffusion Model for Image Captioning

diffusion-based captioning model fine-tuned by a self-

critical reinforcement learning technique

Captioning 

V. Silvio et al., Discrete Diffusion Model for Image Captioning by Self-Critical Learning, Smart Innovation, Systems 

and Technologies
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Neuro-symbolic

field of artificial intelligence that 
integrates neural and symbolic AI architectures to 
address the weaknesses of each, providing a robust AI 
capable of reasoning, learning, and cognitive modeling

Leslie Valiant 

the effective construction of rich computational cognitive 
models demands the combination of symbolic reasoning and 
efficient machine learning

Gary Marcus

We cannot construct rich cognitive models in an adequate, 
automated way without the triumvirate of hybrid architecture, 
rich prior knowledge, and sophisticated techniques for 
reasoning

Neuro-symbolic AI  
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Categories 

Symbolic Neural symbolic

current approach of many neural models in natural language 
processing, where words or subword tokens are the ultimate input 
and output of large language models 

Examples include BERT, RoBERTa, and GPT-3

Symbolic[Neural]

exemplified by AlphaGo, where symbolic techniques are used to 

invoke neural techniques

In this case, the symbolic approach is Monte Carlo tree search and 
the neural techniques learn how to evaluate game positions

Neural | Symbolic

uses a neural architecture to interpret perceptual data as symbols 

and relationships that are reasoned about symbolically

Neural-Concept Learner is an example

Neuro-symbolic AI  
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Categories 
Neural: Symbolic → Neural

relies on symbolic reasoning to generate or label training data that is 
subsequently learned by a deep learning model

e.g., to train a neural model for symbolic computation by using a Macsyma-
like symbolic mathematics system to create or label examples

Neural_{Symbolic}

uses a neural net that is generated from symbolic rules

e.g., Neural Theorem Prover which constructs a neural network from 
an AND-OR proof tree generated from knowledge base rules and 
terms

Logic Tensor Networks also fall into this category

Neural[Symbolic]

allows a neural model to directly call a symbolic reasoning engine

e.g., to perform an action or evaluate a state

an example would be ChatGPT using a plugin to query Wolfram 
Alpha

Neuro-symbolic AI  
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A fuzzy rule base minimization perspective in XAI

The reduction of the fuzzy rules makes the rule base 

simpler, and thus easier to produce explainable 

inference systems (e.g., decision support systems and 

recommenders) 

Fuzzy Logic 

Camastra et al., A Fuzzy Rule Base Minimization Perspective in XAI, Proceedings of WILF 2021, CEUR Workshop 

Proceedings
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Advanced Fuzzy Relational Neural Network

model for extrapolating relevant information from 

images data permitting to obtain a clearer indication 

on the classification processes

Fuzzy Logic 

Di Nardo et al., Advanced Fuzzy Relational Neural Network, Proceedings of WILF 2021, CEUR Workshop 

Proceedings
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Aim

deep representation learning for visual recognition and 

language understanding, and symbolic program 

execution for reasoning

Visual Question Answering 
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Labs @ UniParthenope

Computational Intelligence and Smart System Lab

http://cisslab.uniparthenope.it

Computer Vision & Pattern Recognition ”Alfredo 

Petrosino” Lab

http://cvprlab.uniparthenope.it

High Performance Scientific Computing Smart Lab

http://hpsclab.uniparthenope.it

Multidisciplinary Research Laboratory for the Artificial Intelligence 

at the Sea

https://neptunia.uniparthenope.it
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