

Machine Learning (part II)

PAC learning model

Angelo Ciaramella

Introduction

- The probably approximately correct (PAC) learning model
 - A formal, mathematical model of learnability
 - It origins from a paper by Valiant ("A theory of the learnable", 1984)
 - It is very theoretical
 - Has only very few results that are usable in practice

Formalization

- It formalizes the concept learning task as follows
 X
 - the space from which of the objects (examples) come
 - e.g., if the objects are described by two continuous features, then X=R²
 - **c** is a concept $C \subseteq X$
 - but c can also be interpreted as an X → {0, 1} mapping (each point of X either belongs to c or not)
 - C concept class
 - a set of concepts
 - In the following we always assume that the c concept we have to learn is a member of C

PAC learnability

- L denotes the learning algorithm
 - goal
 - to learn a given c
 - output
 - hypothesis h from concept class C
 - help
 - it has access to a function Ex(c,D)
 - training examples in the form of <x,c(x)> pairs
 - The examples are random, independent, and follow a fixed (but arbitrary) probability distribution D

PAC learnability

- Example
 - $\bullet X = R^2$
 - the 2D plane
 - C
 - all such rectangles of the plain that are parallel with the axes
 - C
 - one fixed rectangle
 - ∎ h
 - another given rectangle
 - D
 - a probability distribution defined over the plain
 - Ex(c, D)
 - It gives positive and negative examples from c

ML – PAC learning

After learning, how can we measure the final error of h?

- error(h)= $c\Delta h$ =(c\h) \cup (h\c)
- the symmetric difference of c and h the size of the blue area in the figure
- It is not good why?
 - D is the probability of picking a given point of the plain randomly
 - we would like our method to work for any possible distribution D
 - If D is 0 in a given area, we won't get samples from there
 - we cannot learn in this area
 - So we cannot guarantee error(h)=c∆h to become 0 for any arbitrary D
 - D is the same during testing
 - we won't get samples from that area during testing either
 - no problem if we couldn't learn there!

True error of a Hypothesis

True error of a hypothesis h with respect to target concept c and distribution D is the probability that h will misclassify an instance drawn at random according to D

$$error_D(h) \equiv \Pr_{x \in D}[c(x) \neq h(x)]$$

Fix a rectangle (unknown to you)

Draw points from some fixed unknown distribution

You are told the points and whether they are in or out

• You propose a hypothesis

Your hypothesis is tested on points drawn from the same distribution

- We want an algorithm that
 - with high probability will choose a hypothesis that is approximately correct

Choose the minimum area rectangle containing all the positive points

How good is this?

- Derive a PAC bound
- For fixed
 - R : Rectangle
 - D : Data Distribution
 - ε : Test Error
 - δ : Probability of failing
 - m : Number of Samples

$\mathbf{P}\left(\mathrm{error}_{\mathrm{test}}(h) \le \epsilon\right) \le 1 - \delta$

We want to show that with high probability the area below measured with respect to D is bounded by ε

$$\mathbf{P}(m \text{ samples miss } T) = \left(1 - \frac{\epsilon}{4}\right)^m$$

probability that all *m* samples miss T

Define T to be the region that contains exactly $\epsilon/4$ of the mass in D sweeping down from the top of R

 $p(T') > \epsilon/4 = p(T)$ IFF T' contains T

T' contains T IFF none of our *m* samples are from T

What is the probability that all samples miss T

Probability that any region has weight greater than ε/4 after m samples is at most

 $4\left(1-\frac{\epsilon}{A}\right)^m$

If we fix m such that

$$4\left(1-\frac{\epsilon}{4}\right)^m \leq \delta$$

Than with probability 1-δ we achieve an error rate of at most ε

Inequality

Common Inequality

$$1 - x \le e^{-x}$$

We can show

$$4\left(1-\frac{\epsilon}{4}\right)^m \leq 4e^{-m\epsilon/4}$$

Obtain a lower bound on the samples

$$m \geq \frac{4}{\epsilon} \ln\left(\frac{4}{\delta}\right)$$

ML - PAC learning

PAC learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H

Definition

• C is PAC-learnable by L using H if for all $c \in C$, distributions D over X, ε such that $0 < \varepsilon < \frac{1}{2}$, and δ such that $0 < \delta < \frac{1}{2}$, learner L will with prob. at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_D(h) \leq \varepsilon$, in time that is polynomial in $1/\varepsilon$, $1/\delta$, n and size(c).

ML – PAC learning

Vapnik-Chervonenkis dimenison

- Provides a measure of the complexity of a "hypothesis space" or the "power" of "learning machine"
- Higher VC dimension implies the ability to represent more complex functions
- The VC dimension is the maximum number of points that can be arranged so that f shatters them
- What does it mean to shatter?

VC dimenison

A classifier \mathbf{f} can shatter a set of points if and only if for all truth assignments to those points \mathbf{f} gets zero training error

example: $f(x,b) = sign(x \cdot x - b)$

H not finite

What if |H| can not be determined?

- It is still possible to come up with estimates based not on counting how many hypotheses, but based on how many instances can be completely discriminated by H
- Use the notion of a shattering of a set of instances to measure the complexity of a hypothesis space
- VC Dimension measures this notion and can be used as a stand in for |H|

ML – PAC learning

Definition

a dichotomy of a set S is a partition of S into two disjoint subsets

Definition

a set of instances S is shattered by hypothesis space H iff for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy

H not finite

Example: 3 instances shattered

Instance space X

VC dimension

Definition

■ the Vapnik-Chervonenkis (VC) dimension, VC(H), of hypothesis space H defined over *instance space* X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then VC(H) = ∞

Example

VC dimension of linear decision surfaces is 3

VC dimension

ML – PAC learning

- Separating the two classes by lines on the plane VCD=3
 - in d-dimensional space VCD=d+1
 - VCD ≥3, as these 3 points can be shattered (all labeling configurations should be tried!)
 - VCD<4, as no 4 points can be shattered: (all point arrangements should be tried!)

Exhausting the Version Space

Definition

the version space VS_{H,D} is said to be *E*-exhausted with respect to c and D, if every hypothesis h in VS_{H,D} has error less than *E* with respect to c and D

 $(\forall h \in VS_{H,D}) error_D(h) < \varepsilon$

Sample Complexity with VC Dimension

• How many randomly drawn examples suffice to \mathcal{E} - exhaust $VS_{H,D}$ with probability at least $(1 - \delta)$?

$$m \ge \frac{1}{\varepsilon} \left(4 \log_2 \left(\frac{2}{\delta} \right) + 8 VC(H) \log_2 \left(\frac{13}{\varepsilon} \right) \right)$$

VC dimension

Goal

- Worst-case performance for a particular trained network
- Binary ouputs
- input vectors
 - generated from some probability distribution P(x)
- target data
 - generated by a noisless function h(x)

- Model
 - y(x)
 - average generalization ability g(y) to be the probability that y(x) = h(x)

VC dimension

- Problem
 - we cannot calculate g(y) directly because we do not know P(x) and h(x)
- Finite data set
 - N samples
 - g_N(y) is the measure of the fraction of the training set which the network y(x; w) correctly classifies (estimation)
 - $g_N(y) \rightarrow g(y)$ for $N \rightarrow \infty$
- Maximum of discrepancy
 - Set of all function {y}

$$\max_{\{y\}}|g_N(y) - g(y)|$$

Vapnik-Chervonenkis dimension

Goal

- Worst-case performance for a particular trained network
- Binary ouputs

Theorem

$$\Pr\left(\max_{\{y\}}|g_N(y) - g(y)| > \epsilon\right) \le 4\Delta(2N)\exp(-\epsilon^2 N/8)$$

ML – PAC learning

Vapnik-Chervonenkis dimension

Vapnik-Chervonenkis dimension

NN

M units, W weights

 $d_{\rm VC} \le 2W \log_2(eM)$

$$N \geq \frac{W}{\epsilon} \log_2 \left(\frac{M}{\epsilon} \right)$$

Two layers and threshold units

 $d_{\mathrm{VC}} \geq 2\lfloor M/2 \rfloor d$ d inputs

$$Md \simeq W$$
 $N_{\min} \simeq W/\epsilon.$
For large networks

