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Introduction

e The probably approximately correct (PAC)
learning model
e A formal, mathematical model of learnability

e It origins from a paper by Valiant (“A theory of the
learnable”, 1984)

e It is very theoretical

¥ Has only very few results that are usable in practice
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Formalization

e It formalizes the concept learning task as follows
E X

the space from which of the objects (examples) come

e.g., if the objects are described by two continuous features,
then X=R?

E cisaconcept c © X

but ¢ can also be interpreted as an X — {0, 1} mapping
(each point of X either belongs to ¢ or not)

E C concept class
a set of concepts

In the following we always assume that the ¢ concept we
have to learn is a member of C
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PAC learnability

r L denotes the learning algorithm

E godal
to learn a given ¢
B output

hypothesis h from concept class C

E help

it has access to a function Ex(c,D)
m fraining examples in the form of <x,c(x)> pairs

m The examples are random, independent, and follow a fixed (but
arbitrary) probability distribution D
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PAC learnability
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r Example

B X = R?
the 2D plane

e C
all such rectangles of the plain e C
that are parallel with the axes S

EC hl ++J:r
one fixed rectangle S

E h e
another given rectangle

e D
a probability distribution defined over the plain

e Ex(c, D)

It gives positive and negative examples from ¢




Error

e After learning, how can we measure the final error
of h?
m error(h)=cAh=(c\h)U(h\c)

B the symmetric difference of c and h — the size of the blue
area in the figure

e It is not good - why?

e D is the probability of picking a given point of the plain
randomly

. we would like our method to work for any possible
distribution D

e If Dis Oin a given area, we won't get samples from there

we cannot learn in this area

B So we cannot guarantee error(h)=cAh to become O for
any arbitrary D

¢ D is the same during testing

B we won't get samples from that area during testing either
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E no problem if we couldn’t learn there!
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True error of a Hypothesis
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e True error of a hypothesis h with respect to target
concept ¢ and distribution D is the probability that
h will misclassify an instance drawn at random
according to D

error,(h) = P}; [c(x) # h(x)]

c h

Instance
Space
X

error




Rectangle game
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» Fix a rectangle (unknown to you)




Rectangle game

r Draw points from some fixed unknown distribution
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Rectangle game
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¢ You are told the points and whether they are in or out
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Rectangle game

You propose a hypothesis
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Rectangle game

r  Your hypothesis is tested on points drawn from the same
distribution
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Rectangle game

¢ We want an algorithm that

e with high probability will choose a hypothesis that is approximately

correct
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Rectangle game

¥ Choose the minimum area rectangle containing all the positive

points
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How good is this?

¢ Derive a PAC bound ' b -
S R
¥ For fixed . e ]
- .
E R : Rectangle | o E
R R R errrr,—rrr:,—.-,—r-! h
g D : Data Distribution
B €: Test Error -
¢ -

E O : Probability of failing

E m: Number of Samples

P (errortest(h) < E) <1-—0
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Proof

® P °
<€
® R
® p e
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We want to show that with high probability the area below measured with
respect to D is bounded by €
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Proof

P (m samples miss T') = (1 - E)

® Py ° 4
| <e/4 T
e ] probability that all m samples miss T
P . R
I I
®
¢ -

Define T to be the region that contains exactly €/4 of the mass in D
sweeping down from the top of R

p(T’) > €/4 = p(T) IFF T’ contains T

T’ contains T IFF none of our m samples are from T
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What is the probability that all samples miss T
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L o

ML — PAC learning

Proof

I = €/4 !

1 1
ey 1
11 ® :R= I
11 o ol
I I k-,—,—,—,—,—,—,—,—,—,—,—.-,—.—fl'h I I
I-J___________-—

- -

What is the probability that
we miss any of the
rectangles:

Union Bound

P(AUB) <P (A)+P(B)

P (m samples miss any T') < 4 (1 _ f)
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Proof

r Probability that any region has weight greater
than €/4 after m samples is at most

4(1—5)
e If we fix m such that 4
4(1—5) < 5
4

¢ Than with probability 1- 6 we achieve an error
rate of at most €
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Inequality

¢ Common Inequality
l—z<e ™

r We can show

4 (1 _ E)m < feme/
4

r Obtain a lower bound on the samples

>41 4
_n_
m_e )
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PAC learning

r Consider a class C of possible target concepts
defined over a set of instances X of length n, and
a learner L using hypothesis space H

¢ Definition

g Cis PAC-learnable by L using H if for all c € C,
distributions D over X, & such that 0 < £ < 3, and 0
such that 0 < 0 < V>, learner L will with prob. at least
(1 - O) output a hypothesis h € H such that errorp(h) <
& in time that is polynomial in 1/¢, 1/0, n and size(c).
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Vapnik-Chervonenkis dimenison

ML — PAC learning

¢ Provides a measure of the complexity of a
“hypothesis space” or the “power” of “learning
machine”

¢ Higher VC dimension implies the ability to
represent more complex functions

¥ The VC dimension is the maximum number of
points that can be arranged so that f shatters
them

r What does it mean to shatter?

22



VC dimenison

N
|

A classifier f can shatter a set of points if and only if for all truth assignments to
those points f gets zero training error

ML — PAC learning

example: f(x,b) = sign(x-x - b)
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H not finite
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What if |H| can not be determined?

e It is still possible to come up with estimates based
not on counting how many hypotheses, but based
on how many instances can be completely
discriminated by H

e Use the notion of a shattering of a set of instances
to measure the complexity of a hypothesis space

¢ VC Dimension measures this notion and can be
used as a stand in for |H|



H not finite

¢ Definition

e a dichotomy of a set S is a partition of S into two
disjoint subsets

e Definition

k a set of instances S is shattered by hypothesis space H
iff for every dichotomy of S there exists some
hypothesis in H consistent with this dichotomy
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H not finite

Example:
3 instances
shattered
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VC dimension

¢ Definition

e the Vapnik-Chervonenkis (VC) dimension, VC(H), of
hypothesis space H defined over instance space X is the
size of the largest finite subset of X shattered by H. If

arbitrarily large finite sets of X can be shattered by H,
then VC(H) =

e Example

B VC dimension of linear decision surfaces is 3
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VC dimension
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r Separating the two classes by lines on the plane VCD=3

E in d-dimensional space VCD=d+1

VCD >3, as these 3 points can be shattered
(all labeling configurations should be tried!)

VCD<4, as no 4 points can be shattered:
(all point arrangements should be tried!)
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Exhausting the Version Space
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Definition
e the version space VS, is said to be ¢-exhausted with

respect to ¢ and D, if every hypothesis h in VS, ; has
error less than € with respect to c and D

(VheVs, p)error,(h)<é&

errorp=.1 errorp=.2 errorp=.3
errorg=.2 VSH D errors=.0 errorg=.4
9
[ ] [ ] °
errorp=.3 errorp=.1 errorp=.2
errorg=.1 errorg=.0 errorg=.3




Sample Complexity with VC Dimension

¢ How many randomly drawn examples suffice to ¢ -
exhaust VS, ;, with probability at least (1 — 0)2

m > ! (4 logz(gj +8VC(H) logz(BD
E o) E
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VC dimension

r Goadl

B Worst-case performance for a particular trained network
e Binary ouputs

¥ input vectors
e generated from some probability distribution P(x)

r target data
® generated by a noisless function h(x)

¥ Model

Ey(x)
B average generalization ability g(y) to be the probability
that y(x) = h(x)

ML — PAC learning
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VC dimension

e Problem

B we cannot calculate g(y) directly because we do not know
P(x) and h(x)

e Finite data set
E N samples

B guly) is the measure of the fraction of the training set which
the network y(x ; w) correctly classifies (estimation)

B gnlyY) 2 gly) for N > «

(0))

% ¥ Maximum of discrepancy

Q e Set of all function {y}

I

= max|gy(y) — g(¥)|
)
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Vapnik-Chervonenkis dimension
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r Goal

e Worst-case performance for a particular trained
network

e Binary ouputs

¥ Theorem

Pr (maxlan(y) — 9] > €) < 4A(N) exp(-N/8)

{v
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Vapnik-Chervonenkis dimension

log, A
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A(N) < No%ve 41,
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Vapnik-Chervonenkis dimension

¢ NN
E M units, W weights

dve < 2W log,(eM)

v ,
N > L log, (E)
€

€

e Two layers and threshold units

dye 2 2|M/2|d dinputs

ML — PAC learning

Md=>~W Novin ~ W/e.
For large networks
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