
	

Machine Learning (part II)

PAC learning model
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The probably approximately correct (PAC) 

learning model 

A formal, mathematical model of learnability

It origins from a paper by Valiant (“A theory of the 

learnable”, 1984)

It is very theoretical

Has only very few results that are usable in practice

Introduction
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It formalizes the concept learning task as follows

X 

the space from which of the objects (examples) come

e.g., if the objects are described by two continuous features, 

then X=R2

c is a concept 𝑐 ⊆ 𝑋

but c can also be interpreted as an X → {0, 1} mapping 

(each point of X either belongs to c or not)

C concept class

a set of concepts 

In the following we always assume that the c concept we 

have to learn is a member of C

Formalization
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L denotes the learning algorithm

goal

to learn a given c

output

hypothesis h from concept class C

help

it has access to a function Ex(c,D)

training examples in the form of <x,c(x)> pairs

The examples are random, independent, and follow a fixed (but 

arbitrary) probability distribution D

PAC learnability 
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Example

X = R2

the 2D plane

C

all such rectangles of the plain 
that are parallel with the axes

c

one fixed rectangle

h

another given rectangle

D

a probability distribution defined over the plain

Ex(c, D)

It gives positive and negative examples from c

PAC learnability 
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After learning, how can we measure the final error 
of h?

error(h)=c∆h=(c\h)(h\c)

the symmetric difference of c and h – the size of the blue 
area in the figure

It is not good - why?

D is the probability of picking a given point of the plain 
randomly

we would like our method to work for any possible 
distribution D

If D is 0 in a given area, we won’t get samples from there

we cannot learn in this area

So we cannot guarantee error(h)=c∆h to become 0 for 
any arbitrary D

D is the same during testing

we won’t get samples from that area during testing either 

no problem if we couldn’t learn there!

Error
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True error of a hypothesis h with respect to target 

concept c and distribution D is the probability that 

h will misclassify an instance drawn at random 

according to D

True error of a Hypothesis

c h

error

Instance

Space

X

)]()([Pr)( xhxcherror
Dx

D 
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Fix a rectangle (unknown to you)

Rectangle game
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Draw points from some fixed unknown distribution

Rectangle game
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You are told the points and whether they are in or out

Rectangle game
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You propose a hypothesis

Rectangle game
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Your hypothesis is tested on points drawn from the same 

distribution

Rectangle game
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We want an algorithm that

with high probability will choose a hypothesis that is approximately 

correct

Rectangle game
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Choose the minimum area rectangle containing all the positive 

points

Rectangle game

h
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Derive a PAC bound

For fixed

R : Rectangle

D : Data Distribution

ε : Test Error

δ : Probability of failing

m : Number of Samples

How good is this?

h

R
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Proof

h

R< ε

We want to show that with high probability the area below measured with 

respect to D is bounded by ε 
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Proof

Define T to be the region that contains exactly ε/4 of the mass in D 

sweeping down from the top of R

p(T’) > ε/4 = p(T) IFF T’ contains T

T’ contains T IFF none of our m samples are from T

What is the probability that all samples miss T

h

R

< ε/4 T’

T
probability that all m samples miss T
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Proof

h

R
T

= ε/4

What is the probability that

we miss any of the

rectangles:

Union Bound 

A B
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Probability that any region has weight greater 

than ε/4 after m samples is at most

If we fix m such that

Than with probability 1- δ we achieve an error 

rate of at most ε

Proof
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Common Inequality

We can show

Obtain a lower bound on the samples

Inequality
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Consider a class C of possible target concepts

defined over a set of instances X of length n, and 

a learner L using hypothesis space H

Definition

C is PAC-learnable by L using H if for all c  C, 

distributions D over X,  such that 0 <  < ½, and 

such that 0 <  < ½, learner L will with prob. at least 

(1 - ) output a hypothesis h  H such that errorD(h) ≤ 

, in time that is polynomial in 1/, 1/, n and size(c).

PAC learning
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Provides a measure of the complexity of a 

“hypothesis space” or the “power” of “learning 

machine”

Higher VC dimension implies the ability to 

represent more complex functions

The VC dimension is the maximum number of 

points that can be arranged so that f shatters 

them

What does it mean to shatter?

Vapnik-Chervonenkis dimenison
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VC dimenison

A classifier f can shatter a set of points if and only if for all truth assignments to 

those points f gets zero training error

example: f(x,b) = sign(x∙x - b)
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What if |H| can not be determined?

It is still possible to come up with estimates based 

not on counting how many hypotheses, but based 
on how many instances can be completely 
discriminated by H

Use the notion of a shattering of a set of instances 
to measure the complexity of a hypothesis space

VC Dimension measures this notion and can be 

used as a stand in for |H|

H not finite
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Definition

a dichotomy of a set S is a partition of S into two 

disjoint subsets

Definition

a set of instances S is shattered by hypothesis space H

iff for every dichotomy of S there exists some 

hypothesis in H consistent with this dichotomy

H not finite
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Example:

3 instances

shattered

Instance space X
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Definition

the Vapnik-Chervonenkis (VC) dimension, VC(H), of 

hypothesis space H defined over instance space X is the 

size of the largest finite subset of X shattered by H.  If 

arbitrarily large finite sets of X can be shattered by H, 

then VC(H) = ∞

Example

VC dimension of linear decision surfaces is 3

VC dimension
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Separating the two classes by lines on the plane VCD=3

in d-dimensional space VCD=d+1

VCD ≥3, as these 3 points can be shattered

(all labeling configurations should be tried!)

VCD<4, as no 4 points can be shattered:

(all point arrangements should be tried!)

VC dimension
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Definition

the version space VSH,D is said to be -exhausted with 

respect to c and D, if every hypothesis h in VSH,D has 

error less than  with respect to c and D

Exhausting the Version Space

  )( )( ,  herrorVSh DDH

errorD=.3

errorS =.1

errorD=.1

errorS =.2

errorD=.1

errorS =.0

errorD=.2

errorS =.0

errorD=.3

errorS =.4

errorD=.2

errorS =.3

VSH,D
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How many randomly drawn examples suffice to  -

exhaust VSH,D with probability at least (1 – )?

Sample Complexity with VC Dimension
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Goal
Worst-case performance for a particular trained network

Binary ouputs

input vectors 
generated  from some probability distribution P(x)

target data 
generated by a noisless function h(x)

Model 
y(x)

average generalization ability g(y) to be the probability 
that y(x) = h(x)

VC dimension
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Problem
we cannot calculate g(y) directly because we do not know 
P(x) and h(x)

Finite data set 
N samples 

gN(y) is the measure of the fraction of the training set which 
the network y(x ; w) correctly classifies (estimation)

gN(y) → g(y) for N → ∞

Maximum of discrepancy 
Set of all function 𝑦

 max
 𝑦

𝑔𝑁 𝑦 − 𝑔(𝑦)  

VC dimension
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Goal

Worst-case performance for a particular trained 

network

Binary ouputs

Theorem 

Vapnik-Chervonenkis dimension
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Vapnik-Chervonenkis dimension
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NN

M units, W weights

Two layers and threshold units 

 

Vapnik-Chervonenkis dimension

d inputs 

For large networks 
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