

Course of "Industrial Automation" 2024/25

Introduction

Prof. Francesco Montefusco

Department of Economics, Law, Cybersecurity, and Sports Sciences

Università degli studi di Napoli Parthenope

francesco.montefusco@uniparthenope.it

Team code: **5qf4mll**

Course Administration

L-mail: francesco.montefusco@uniparthenope.it

▲ Books

- ♣ Introduction to Dynamic Systems: Theory, Models, and Applications, D. G. Luenberger. John Wiley & Sons.
- ✦ Fondamenti di Controlli Automatici, 4th Ed, P. Bolzern, R. Scattolini, N. Schiavoni. McGraw-Hill (Italian).
- ♦ Modern Control Engineering, 3rd Edition, K. Ogata, Prentice Hall, 2004.
- ♦ Discrete-Time Control Systems, 2nd Edition, K. Ogata, Prentice Hall, 1995.
- → Digital Control of Dynamic Systems, 3rd Edition, G. F. Franklin, J. David Powell, M. Workman, Addison Wesley, 1998.

▲ Slides of the lectures

Prerequisites

♦ Main contents provided by the course of Automatic Control Systems.

- ♦ Written exam (in addition, ongoing written test by the end of April).
- ♦ Oral exam including discussion of a project report about the device of a closed-loop control system with required characteristics by using Matlab/Simulink

Contents of the course

- ▲ This course provides the methods to design industrial control systems and PID controllers
- ▲ The course is conceptually divided in three parts:
 - ♦ Discrete time systems
 - ♦ Notion of Industrial Automation
 - → Design of digital control systems and PID implementation
- ▲ Laboratory activities
- After the course the student should be able
 - ♦ to analyse industrial control systems and evaluate the performance
 - ♦ to design closed-loop systems guaranteeing a set of these properties
 - ♦ to use software packages (Matlab and Simulink) to devise and evaluate control systems performance

Prof. Francesco Montefusco Industrial Automation, 2024/25

Introduction

Automation or automatic control is a discipline whose aim is the study of the methodologies and technologies able to reduce or completely eliminate the human intervention in applications of interest.

▲ Benefits:

- ♦ Quality
- **♦** Accuracy
- ✦ Reliability
- **♦** Repeatability
- **♦** Cost reduction
- **♦** Security
- **♦** ...

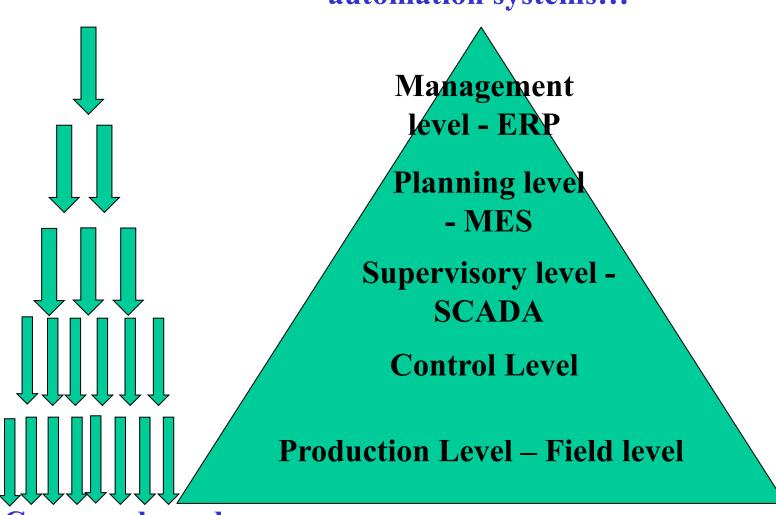
Applications

- ▲ Applications in most engineering domains:
 - **♦** Aerospace
 - ♦ Cars and Vehicles
 - ♦ Process industry
 - ♦ Energy storage and distribution
 - **♦** Home automation
 - ♦ Logistic
 - ♦ Biology
 - ♦ Autonomous systems and robots
 - ♦ ...

Prof. Francesco Montefusco 5 Industrial Automation, 2024/25

Detailed program of the course 1/2

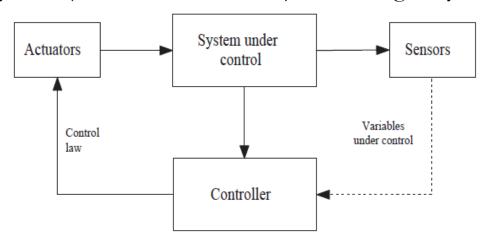
- ▲ Introduction
- ▲ Discrete-time systems
 - ♣ LTI discrete time systems
 - ♣ Free and forced evolution
 - **♦** Stability
 - ♦ The Z-transform
- ▲ Notions of automatic control
 - ♦ Nominal and robust stability
 - ♦ Nyquist criterion
 - ♣ Requirements of a control system
- ▲ The root locus
 - ♦ Tracing of the root locus
 - ♦ Design of a control system using the root locus


Detailed program of the course 2/2

- △ Design of digital control systems
 - ♦ Analog-to-digital and digital-to-analog converters: their frequency characterization
 - ♦ Design through discretization of a time-continuous system. Design using the root locus
 - ♦ Control design in discrete time
- ▲ PID controllers and their implementation
 - ♦ PID controllers
 - ♣ Integral action anti-windup techniques
 - ♣ Bumpless transfer techniques
- ▲ Laboratory activities
 - ♦ Use of Matlab and Simulink for the design and verification of the behavior of closed loop systems

Computer Integrated Manufacturing (CIM) approach

The Automation Pyramid is a hierarchical model of industrial automation systems...


Commands, orders

Information

(Local) control system at field level: components

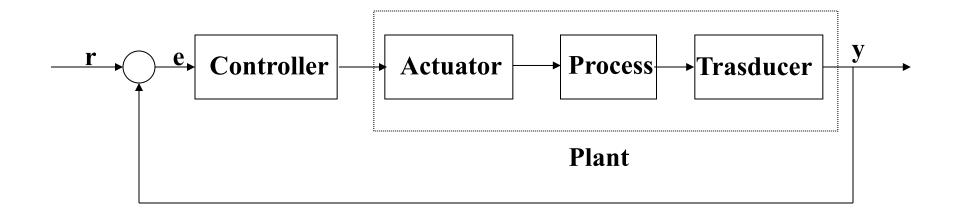
An active control system (manual or automatic) can be logically divided in three parts:

Sensors:

whose aim is to measure the quantities of interest (related to the variables under control) in order to evaluate the behavior of the system under analysis

Controller:

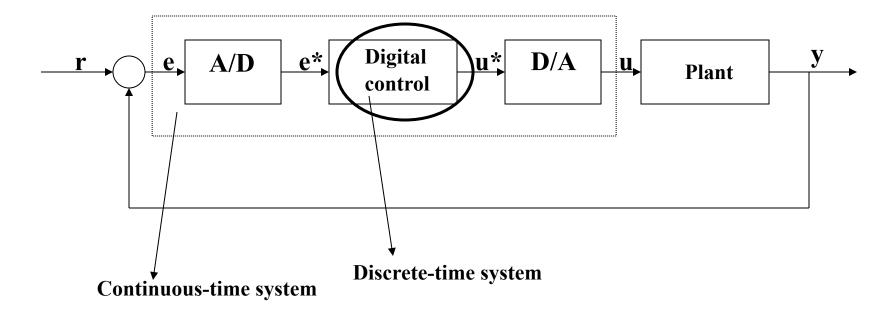
whose aim is to impose the desired behavior to the system under control, making use of the values of the sensed variables (if available).


Actuators:

whose aim is to implement the computed control actions on a set of *control* variables (related but usually not coincident to the variables under control)

Prof. Francesco Montefusco Industrial Automation, 2024/25

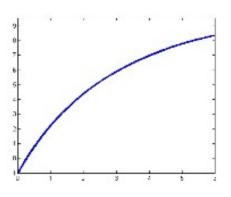
Continuous control system



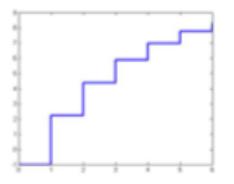
Implementation of C(s)

- Past: analog electronic technology (op amps), hydraulic technology, pneumatic technology
- Present: digital technology (microprocessor systems)

Digital control system


Implementation of C(z)

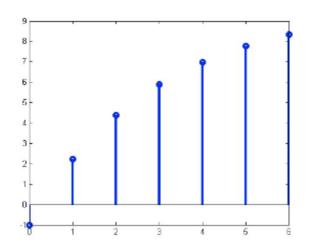
• C(z) is an algorithm (sums, products, . . .) that can be implemented in any programming language



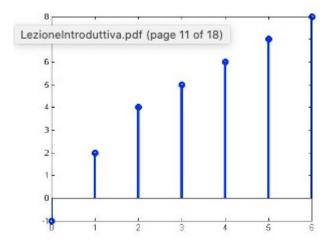
Continuous-time signals

The time variable t varies continuously in an interval of \mathbb{R} .

analog signals, if the amplitude can vary continuously in an interval of \mathbb{R}



quantized signals, if the amplitude can assume only a finite set of values



Discrete-time signals

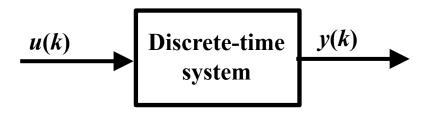
The time variable can assume only a set (even infinite) of discrete values.

sampled data signals, if the amplitude can vary continuously in an interval of \mathbb{R}

digital signals, if the amplitude is quantized.

Digital signals are represented with a finite number of binary digits.

Discrete-time systems

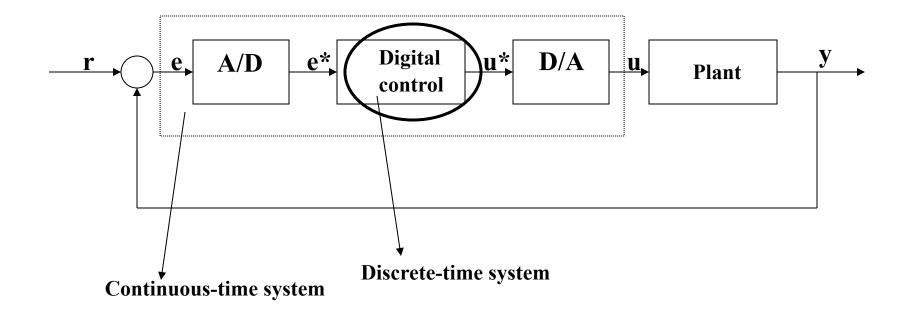

- Discrete-time systems are characterized by the fact that the time variable is integer rather than real.
- So, input and output are sequences of numbers,

$$\{u(k)\}_{k\in\mathbb{N}} \qquad \{y(k)\}_{k\in\mathbb{N}}$$

• ... and are denoted by u(k) and y(k).

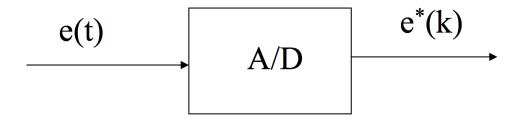
Discrete-time systems: transfer function

The Z-transform of f(k): $F(z) = Z(f(k)) = \sum_{k=0}^{+\infty} f(k)z^{-k}$


The transfer function W(z)

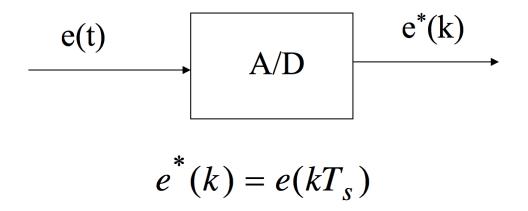
$$W(z) = \frac{Y(z) = W(z)U(z)}{U(z)}$$

$$W(z) = \frac{Y(z)}{U(z)}$$


Digital control system

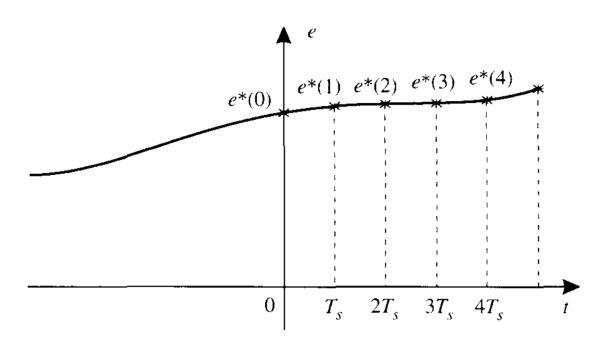
Analog-to-digital converter (ADC, A/D, or A-to-D)

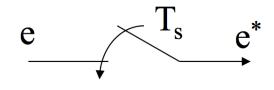
- The digital controller is a discrete-time system and the plant to be controlled is a continuous-time system.
- It is needed a device that transforms a continuous signal into a discrete one.



• Such device is the analog-to-digital converter (A/D).

Ideal sampler


• The most common analog-to-digital converter is the sampler, which does the following



- Periodic sampling: the sampling instants are equally spaced, or k, i.e. $t_k = kT_s$ (k=0,1,2,..), with T_s representing the sampling time.
- The hold circuit holds the value of the sampled signal over a specified period of time.

Sampling operation

•
$$f_S = \frac{1}{T_S}$$

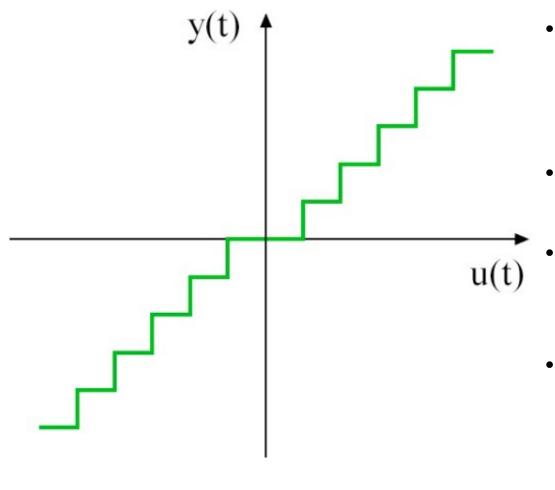
•
$$f_S = \frac{1}{T_S}$$
 • $\omega_S = 2\pi f_S = \frac{2\pi}{T_S}$.

Sampling operation

• The common problem when sampling a signal is the loss of information.

• Indeed, it is obvious that the same signal $e^*(k)$ can be generated by infinite continuous-time functions e(t).

• Hence, given a signal $e^*(k)$ it is impossible to go back to the original signal e(t).



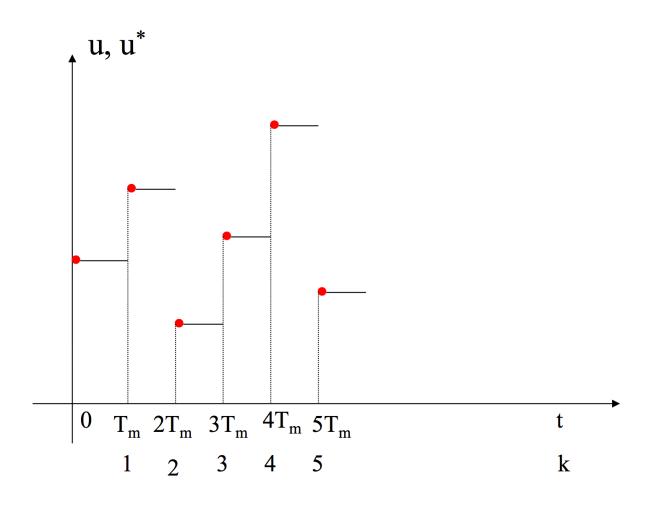
Quantization

- The sampler defined above is ideal.
- It is assumed that in the sampling instants the value of e^* coincides with that of e.
- e*(k) is represented by a finite number of discrete states (by a numerical code)
- The process of representing a continuous or analog signal into a set of discrete state is called (amplitude) quantization.
- The output state of each quantized sample is then described by a numerical code (such a binary code): this process is called encoding.

Quantization

- The standard number system used for processing digital system is the binary number system
- *n* bits available, 2ⁿ amplitude levels represented
- The quantization operation introduces a nonlinearity in the system
- When the number of digits of the binary representation is high enough, it is possible to neglect the effect of quantization

Digital-to-analog converter (DAC, D/A, or D-to-A)

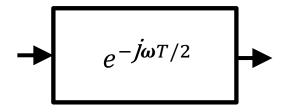

- It is a device that transforms a digital input (binary numbers) to an analog output.
- The most commonly used D/A converter is the zero order hold (ZOH), which operates as follows:

$$u(t) = u^*(k) \quad t \in [kT_m, (k+1)T_m]$$

• T_m is the sample time

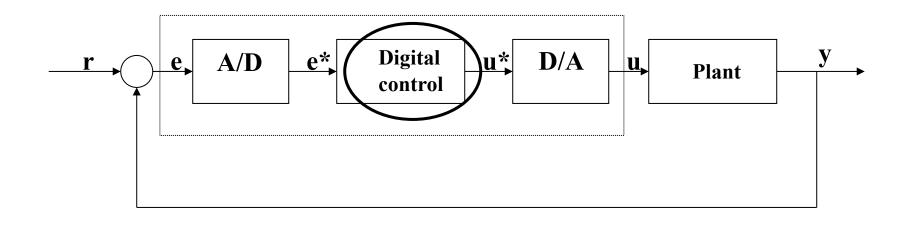
ZOH circuit

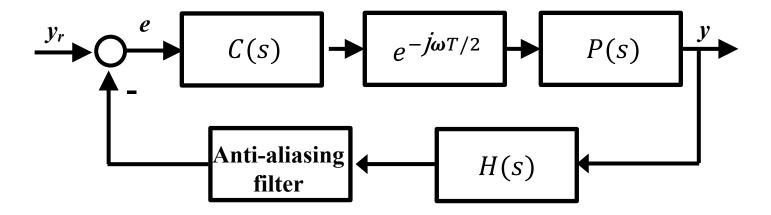
Prof. Francesco Montefusco 24 Industrial Automation 2024/25


Shannon's Theorem

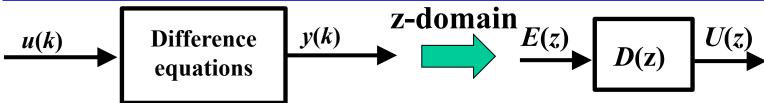
In order for an analog signal (e(t)) to be reconstructed from its sampled version $(e^*(k))$, by Shannon's theorem, it must have a strictly limited bandwidth and $\omega_S > 2\omega_B$ (with ω_B signal bandwidth).

Sampler – ZOH series


• By working in the frequency range $\omega < \frac{\omega_S}{8}$, it is possible to approximate the sampler-zoh series (hp $T_s = T_m = T$) with a delay element



- where this term introduces a maximum delay equal to $\frac{\omega T}{2}|_{\omega = \frac{\omega_s}{8}} \approx 22^{\circ}$
- The presence of a numerical control tends to destabilize the entire system.


Scheme of the digital control system in continuous-time

Analog vs. digital

- From C(s) we want to find an equivalent D(z):
- The transition from continuous time to discrete time is expressed by the following equality:

$$z = e^{sT}$$

$$C(s)|_{s=j\omega} = D(z)|_{z=e^{j\omega T}}$$

• By Euler's method,

$$s = \frac{z-1}{T}$$
 (forward rectangular rule) and $s = \frac{z-1}{zT}$ (backward).

• Bilinear transformation: $s = \frac{2z - 1}{z + 1}$

• The presence of a numerical control tends to destabilize the entire system.

$$U(z)=D(z)E(z)$$
.