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Introduction

e Denoising Diffusion Probabilistic Models

e take each training image and to corrupt it using a
multi-step noise process to transform it into a sample
from a Gaussian distribution

e a DNN is then trained to invert this process, and once
trained the network can then generate new images
starting with samples from a Gaussian as input
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Encoding process
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Figure 20.1 lllustration of the encoding process in a diffusion model showing an image x that is gradually
corrupted with multiple stages of additive Gaussian noise giving a sequence of increasingly noisy images. After
a large number T of steps the result is indistinguishable from a sample drawn from a Gaussian distribution. A
deep neural network is then trained to reverse this process.
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Forward encoder

r Image x from the training set
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variance of the noise distribution

z, with zero mean and unit variance

e rewriting the transformation
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Markov chain
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Figure 20.2 A diffusion process represented as a probabilistic graphical model. The original image x is
shown by the shaded node, since it is an observed variable, whereas the noise-corrupted
images z1, ...,z7 are considered to be latent variables. The noise process is defined by
the forward distribution ¢(z:|z:—1) and can be viewed as an encoder. Our goal is to learn a
model p(z:—1|z:, w) that tries to reverse this noise process and which can be viewed as a

decoder. As we will see later, the conditional distribution g(z:—1|z:,x) plays an important
role in defining the training procedure.
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Diffusion kernel
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¢ Joint distribution of the latent variables

t
q(21, . .., 2¢|x) = q(z1]%) H q(zr|zr-1)
T=2
¥ Marginalizing over the intermediate variables z,,
. ., Z,.; we obtain the diffusion kernel

q(2¢|x) = N (2] (/X (1 — a)I)

Qr = H(l — pBr)

T=1



Diffusion kernel

r After many steps the image becomes
indistinguishable from Gaussian noise

T — oo

q(zr|x) = N(zr|0,1)

r Independence of x

q(zr) = N (2r[0,1)
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Conditiona distribution

r Using Bayes’ theorem reversing the conditonal
distribution

7)) — q(Z¢|2t—1)q(Z¢—1)
o) = q(z¢)

q(ze—
intractable for p(x)

2z 1) = / 1(ze—1[x)p(x) dx

q(2:[%) = N (2] /orx, (1 — o))
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Conditiona distribution

¢ Using Bayes’ theorem

 q(Ze|ze—1,x)q(20—1]x)
N TEAES

q(ztlzt—lax) = Q’(Zt|zt—1)

q(zt|ze—1) = N (2| /1 — Brzi—1, Bi])
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Reverse decoder

e Revers process by Gaussian distribution

p(zt—llztﬁw) — N(ZE—I‘”(EEaW'Jt)MBEI)

deep neural network governed by a set of parameters w

e reverse denoising process then takes the form of a
Markov chain given by

p(X:ZI: ZT|W {Hp ZE 1|ZI::| }p(X|ZlFW)

network takes the step index t explicitly as an input so that it can account
for the variation of the variance across different steps of the chain.
This allows us to use a single network to invert all the steps in the Markov chain
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Training the decoder

¢ Objective function for training the NN (likelihood)

p(x|w) :/.../p(}c?zh,..jzﬂw)dzl“. dzr

e the likelihood is intractable
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ELBO

e Evidence Lower Bound (ELBO)

Inp(x|w) = L(w) + KL (¢(2)||p(z|x, w))

co)= [ {55 o

KL (f(2)lg(2)) = - [ f@)1n{

¢ from
p(x,z|w) = p(z|x, w)p(x|w)
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Inp(x|w) > L(w)
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ELBO

£(w) = [ ala1]x) 1nplxlzn, w) dzy

reconstruction term

T
=Y [ KLzl ) Ip(an e w))a(anx) dz

consistency terms
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ELBO

Algorithm 20.1: Training a denoising diffusion probabilistic model

Input: Training data D = {x,}
Noise schedule {51, ..., 87}
Output: Network parameters w
forte{1,...,T}do
‘ Qg — Hfr:l(l — Br) // Calculate alphas from betas
end for

repeat

X~D // sample a data point

t~ {1, .. ,T} // Sample a point along the Markov chain
€ ~ N(€]0,I) // Sample a noise vector

Zi \/CTIX + ME // Evaluate noisy latent variable
L(w) + ||g(ze, w,t) — nE”2 // Compute loss term

g Take optimizer step
| until converged

—

= return w
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ELBO

Algorithm 20.2: Sampling from a denoising diffusion probabilistic model

Input: Trained denoising network g(z, w, t)
Noise schedule {f1,..., 81}
Output: Sample vector x in data space

ZTNN(Zlﬂ,I) // Sample from final latent space
fortcT,...,2do
Qp $— Hizl(l — ﬁr] // Calculate alpha

// Evaluate network Dutput

p(ze, W, t) < ﬁ {zt Vfg Zi, W, t}}
e ~ N(€|0,I) // sample a noise vector

Zy—q1 ¢ W(2Z¢, W, t) + /Bi€ // BRdd scaled noise

» end for

= ; 8

DI X= = {Zl — v’l—lia]g(zl*w*t)} // Final denoising step
g return x
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