;| DiPARTIMENTD DI SCiENZE
54| E TECNOLOGIE

Machine Learning (part Il)

Graph Neural Networks

Angelo Ciaramella

Introduction

¥ Structured data

e in the form of sequences and images, corresponding to
one-dimensional and two-dimensional arrays of
variables respectively

B many types of structured data are best described by o
graph

set of nodes connected by edges

ML — GNN

f <]
K7

Structured data

\ON/
N
ﬁ»

OITIN

(a) Bristol London

Cambridge

(b)

o

Figure 13.1 Three examples of graph-structured data: (a) the caffeine molecule consisting of atoms connected
by chemical bonds, (b) a rail network consisting of cities connected by railway lines, and (c) the worldwide web

consisting of pages connected by hyperlinks.

ML — GNN

R 34

Graphs

permutation

nodes edges 0010 0

g _ (V 5‘) 00001
o y P = 1 0 0 0 0

0O 0 0 1 0

01 0 0 0

A B C D FE Cc KE A D B
A C
@ ® - :
¢ A A =PAPT
e e D D
e E B
(a) (b) (c)
y 4 Figure 13.2 An example of an adjacency matrix showing (a) an example of a graph with five nodes, (b) the
Z associated adjacency matrix for a particular choice of node order, and (c) the adjacency matrix corresponding to
O a different choice for the node order.
I
s
it 4

A o
o oM

Permutation equivariance

¥ lnvariance

e The network predictions must be invariant to node label
reordering

y(X,A) =y(X,A) Invariance

¥ Equivariance

e node predictions should be equivariant with respect to
node label reordering

y(iﬁg) = Py(X,A) Equivariance

ML — GNN

Convolution filter

ML — GNN

R 34

V

NN N AN XN

AN

/

(a)

g
7

[[+ 1

Invariant to any permutation

A = £ [t 3 29+ iz + b

aggregation

JEN(4)

N
N/

O/' ;{

(b)

Figure 13.3 A convolutional filter for images can be represented as a graph-structured computation. (a) A filter
computed by node i in layer I + 1 of a deep convolutional network is a function of the activation values in layer
| over a local patch of pixels. (b) The same computation structure expressed as a graph showing ‘messages’

flowing into node i from its neighbours.

Message-passing NN

Algorithm 13.1: Simple message-passing neural network

Input: Undirected graph G = (V, &€)
Initial node embeddings {h =)
Aggregate(-) function
Update(-, -) function

Output: Final node embeddings {hg’}}

// Iterative message-passing

forle{0,...,L —1}do
7! « Aggregate ({hﬁ,’? :m € N(n)})
it « Update (hg], zﬁ))

end for
return {h{{”}

ML — GNN

[
hqirzj D-dimensional column vector of node-embedding variables

PR
LS

Aggregation operators

sum
Aggregate ({h{Y) :m e N(n)}) = Z h®
meN (n)
average
1
Aggregate ({h{) : m e N'(n)}) = Nl Z hY
meN (n)

element-wise

h®
Aggregate ({h,ﬁ? :meN(n)}) = m

learnable parameters

ML — GNN

meN (n)

Aggregate ({h,ﬂf :m € N(n)}) = MLPy (Z MLP4(h{))

|

Information flow

ML — GNN

L.

Figure 13.4 Schematic illustration of infor-
mation flow through successive layers of a
graph neural network. In the third layer a sin-
gle node is highlighted in red. It receives in-
formation from its two neighbours in the previ-
ous layer and those in turn receive informa-
tion from their neighbours in the first layer.
As with convolutional neural networks for im-
ages, we see that the effective receptive field,
corresponding to the number of nodes shown
in red, grows with the number of processing
layers.

=
=)

Update operators

Update (h{,z{) = f (Werh?) + W ignzd) + b)

@ Wse]f — Wneigh

h(+) = Update (hV,z¥) = f (Wneigh > hl)+ b)

meN (n),n

ML — GNN

%

10

Node classification

r GNN

E can be viewed as a series of layers each of which
transforms a set of node-embedding vectors {h ('} into
a new set {h ("1} of the same size and dimensionality

e Classifying nodes in a graph
e readout layer
exp(wfhgf’))
> exp(w}ﬂhg"})

Yni —

E loss function

C
L=— > Dy

nevtrain i=1

ML — GNN

f <]
K%

11

Edge classification

e edge completion

e edge present between two nodes

p(n,m)=o (h,,l;_hm)

¢ Example

r predicting whether two people in a social network have
shared interests and therefore might wish to connect

ML — GNN

f <]
K%

12

Graph classification

ML — GNN

e sum of the node-embedding vectors

e edge present between two nodes

y=t (Zh&f})

ney

13

Graph attention network

» Aggregation

z\l) = Aggregate ({h!)) :m e N'(n)}) = Z Apmh®

meN (n)
Apm 20
bilinear > Apm =1
meN (n)
A exp (hEWhm)
nwz—'Ejnﬂewﬁﬂexp(hEVVhwﬂ)
general

A exp {MLP (h,,,h;,)}

> mren(m) €XP {MLP (hy,, hy,)}

ML — GNN

R o

14

Embeddings

ML — GNN

%

» Edges

ﬂm 77T ? T 13 Tri
z,ﬂ“ = Aggregate__,_ ({eﬁﬁl” T m € N(n)}]
h{"1) = Update h), z0+D)

nDE(ﬂﬂﬂ

e0+1) = Update,,_. (e®),, h®, h®)

r Graph

el!'t1) — Update_, ge (e('E ,h®) K g(”)
z{TD = Aggregate, .. ({e““} :meN(n)})
h0+) — Update, . (h®), 204D, g®)

g1 = Update

node

graph

(8, {h{*) : n eV}, {el)

(n,m) € £})

15

Over-smoothing

¢ Modifying the operator

h(+D = Update,,,. (h®, 2D, g®) + h®

n n mn mn

e Taking information from all previous layers

yn=f (b &ah@P & --&hlP)

ML — GNN

16

	Slide 1
	Slide 2: Introduction
	Slide 3: Structured data
	Slide 4: Graphs
	Slide 5: Permutation equivariance
	Slide 6: Convolution filter
	Slide 7: Message-passing NN
	Slide 8: Aggregation operators
	Slide 9: Information flow
	Slide 10: Update operators
	Slide 11: Node classification
	Slide 12: Edge classification
	Slide 13: Graph classification
	Slide 14: Graph attention network
	Slide 15: Embeddings
	Slide 16: Over-smoothing

