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Introduction

¥ Transformers

e transform a set of vectors in some representation space into
a corresponding set of vectors, having the same
dimensionality, in some new space

e the fundamental concept that underpins a transformer is
attention

¢ Attention

e developed as an enhancement to RNNs for machine
translation

r A transformer can be viewed as a richer form of
embedding in which a given vector is mapped to o
location that depends on the other vectors in the
sequence

ML — Transformers

X" »



Attention

[ 1 ] (swam) [acrOSS][ the ][river][ to ][ get ] [ to ][ the ][other] [bank]
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[ 1 ) (swam ] (across ] the | river | [ to J[ get ][ to ][ the ] [other ] [ bank ]

Figure 12.1 Schematic illustration of attention in which the interpretation of the word ‘bank’ is influenced by the
words ‘river’ and ‘swam’, with the thickness of each line being indicative of the strength of its influence.
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Introduction

Figure 12.3 The structure of the data matrix X, of di-
mension N x D, in which row n repre-
sents the transposed data vector X,
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X = TransformerLayer [X]
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function that takes a data matrix as input and creates a transformed
matrix of the same dimensionality as the output
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Deep networks

¢ Multiple transformer layers

e to construct deep networks capable of learning rich
internal representations

® each transformer layer contains its own weights and
biases, which can be learned using gradient descent
using appropriate cost function
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Attention coefficients

attention weights (non-negative)

N anm 2 0

Yn — E ApmXm N
m=1 E : By, —

The coefficients should be close to zero for input tokens that have little
iInfluence on the output y,, and largest for inputs that have most influence
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Self-Attention

e choosing which movie to watch in an online movie
streaming service
B associate each movie with a list of attributes
e attributes of each movie in a vector called the key
e the corresponding movie file itself is called a value
e personal vector of values for the desired attributes

called query

¥ movie service could then compare the query
vector with all the key vectors to find the best
match and send the corresponding movie to the
user in the form of the value file (hard attention)
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Soft attention
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¥ we use continuous variables to measure the
degree of match between queries and keys

e variables to weight the influence of the value vectors on

the outputs
dot product

exp (X, Xm)

N softmax
E-m’:l EKP(KEX?H’)

Upm —

normalization

e if all the input vectors are orthogonal

Vm =Xmiorm=1,...,N



Self attention

¢ Matrix notation dot product self-attention

Y = Softmax [XXT] X

¥ we are using the same sequence to determine the
queries, keys, and values
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Self attention
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Self attention
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N x Dy

Softmax < QK" > X

N x N

output from an attention layer

N x Dy
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Scaled self-attention

r the gradients of the softmax function become
exponentially small for inputs of high magnitude

e variance of the dot product would be Dy

Y

: Scaled dot-product self-attention
[ mat mul ]
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Multi-head attention

e in natural language some patterns might be

relevant to tense whereas others might be

associated with vocabulary

H; = Attention(Q, Kp, V)

Qn = XW}?
K, = XW
V, = XWWY

Y (X) = Concat [H;,... Hyg| W©
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Multi-head attention

[ linear ]
»[ t concat ]4—

self-attention self-attention L self-attention

t §¢ tttI 1 ¢

X

Figure 12.8 Information flow in a multi-head attention layer. The associated computation, given by
Algorithm 12.2, is illustrated in Figure 12.7.
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Residual connections

e Improving the learning

Z = LayerNorm [Y (X) + X] H heads
¢ Adding MLP ff
[ add & norm ]«l-
X = LayerNorm [MLP [Z] + Z] ( M+LP ]
g add & norm }d—
S 4
c multi-head ]
O self-attention
| t i
: |
X
B2
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Positional embeddings
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Attention is all You Need
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Figure 1: Architecture of the standard Transformer (Vaswani et al., 2017)
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Vision Transformers
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ViT
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Vision Transformers
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Image captioning

A little girl sitting on a bed with
a teddy bear.
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A group of people sitting on a boat
in the water.

A stop sign is on a road with a
mountain in the background.

A giraffe standing in a forest with
trees in the background.
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ViT for video
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ViT for video

Sample frames, extract 2D patches and linearly project (as in ViT). Consider
a video as a “big image”
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Visual tracking

Transformer Encoder

L Patch Embedding

L. :

] Backbone + Neck

ok

Tracking vision transformer with class and regression tokens
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https://www.sciencedirect.com/topics/engineering/bounding-box

Visual tracking
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Outputs for sequence Groupl_2 in UAV123 with the attention of two tokens overlaying the
image. First row: Bounding Box outputs. Second row: Regression token attention. Third row:
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