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Soft Computing

Fuzzy Logic
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¢ Motivation

e All complex human actions are decisions based on such
concepfts:

driving and parking a car
financial /business decisions
law and justice

giving a lecture

listening to the professor/tutor

e Computers need a mathematical model to express and
process such complex semantics

e Concepts in classical mathematics are inadequate for
such models



Fuzziness vs Uncertainty

Fuzzy Logic
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e Any notation is said to be fuzzy when its meaning
is not fixed by sharp boundaries

e the statement can be applied fully, to a certain degree,
or not at all

e the gradual degrees of this membership is also called
fuzziness

very, rather, or almost



In brief ..

¢ Boolean logic
® Boole (1854)

¢ Classical set theory (1900)

® traditional sets (boolean belonging) and set operations

r Multivariate logic
® Russell (1920)
® Lukasiewicz (1930)

¥ Fuzzy Logic theory
e Lotfi Asker Zadeh Zadeh (1965) G b

extension of traditional sets (non boolean belonging) and operations
on the elements

Fuzzy Logic
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In brief ...

Fuzzy Logic
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¥ Moreover

Type-2 fuzzy sets — Zadeh (1975)
Intuitionistics fuzzy sets — Atanassov (1986)
Rough sets — Pawlack (1991)

Neutrosophic logic — Sarandache (1998)
Granular computing — Pedrycz et al. (2001)

Explainable Fuzzy Systems — ...
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Fuzzy sets

Fuzzy Logic

Any notation is said to be fuzzy when its meaning is
not fixed by sharp boundaries

e the statement can be applied fully, to a certain degree, or
not at all

e the gradual degrees of this membership is also called
fuzziness

very, rather, or almost

Sorites Paradox

If a sand dune is small, adding one grain of sand to it leaves it small.
A sand dune with a single grain is small.

Hence all sand dunes are small.

Fuzzy set theory does not assume any threshold!



Uncertainty

» Uncertainty describes the probability of a well-
defined proposition

E Rolling a die will either lead to exactly 6 or not, but not
something around 6

e Uncertainty is different from Imprecision

® Uncertainty comes e.g. from randomness or subjective belief

¥ There are lots of non-standard calculi for handling
uncertainty e.g.:

B belief functions

Fuzzy Logic

B possibility theory
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Principle of Incompatibility

e Lotfi A. Zadeh’s Principle of Incompatibility

“Stated informally, the essence of this principle is that as the
complexity of a system increases, our ability to make precise
and yet significant statements about its behavior diminishes
until a threshold is reached beyond which precision and
significance (or relevance) become almost mutually exclusive
characteristics.”

Precision and Significance in the Real World I
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Fuzzy Logic
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Crisp Sets

e Crisp set
E Collection of distinct objects

E Let X be a universe of discourse and A crisp set

¢ Characteristic function

[1 if and onlyif x € A
pa(x) =+

kO if and onlyif x € A

Fuzzy Logic

Ha:X —{0,1}

VRt o
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Fuzzy Sefts

e Fuzzy set

A= {(x,ua(x))| x € X}

» Membership function
e generalization of the characteristic function
e grade (or degree) of membership of x in A

E the degree that x belongs to A

Ha:X = [0,1]

Fuzzy Logic
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Membership function

r Membership degrees
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Membership function

¢ Membership degrees

1.0 + H
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a b T c

d

Fuzzy set uy characterizing velocity of rotating hard disk

g Supp(4) = {x € X| us(x) > 0} [a,d]
¥ Core(d) = {x € X| pa(x) = 1} [b,c]

Height(A) = S98{ 1, (x))
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Membership function

Fuzzy Logic
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e Singleton

E A fuzzy set A whose support is a single point in X

¥ Crossover

B The element x in which the membershio is 0.5

e Representation of a fuzzy set

n
A=y /xg+ a3 + o /Xt i fxn = Z.ui/xi
i=1

A= jX 1A () /x

16



Semantic of Fuzzy Sets

¥ Fuzzy sets are relevant in three types of
information-driven tasks
e classification and data analysis
B decision-making problems

B approximate reasoning

e These three tasks exploit three semantics of
membership grades

e similarity

e preference

Fuzzy Logic

B possibility
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Traditional logic

¢ There are traditional, linguistic,
psychological, epistemological
and mathematical schools

e Traditional logic has been founded
by Aristotle (384-322 B.C.)

e Aristotlelian logic can be seen as
formal approach to human
reasoning

e It’s still used today in Artificial
Intelligence for knowledge

Detail of “The School of Athens” by R. Sanzio 1509)
represenfq'ﬁon Qnd reqsoning showing Plato (left) and his student Aristotle (right).

about knowledge

Fuzzy Logic
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Classical Logic

r Logic
e studies methods/principles of reasoning

e classical logic deals with propositions (either true or
false)

e The propositional logic handles combination of logical
variables
Key idea - how to express n-ary logic functions with logic
primitives

meg —,AV,—

E A set of logic primitives is complete if any logic function
can be composed by a finite number of these primitives

e.g. {- AV} {=A}L {= —) {I} (NOR), {|} (NAND)

Fuzzy Logic
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Inference rules

¢ When a variable represented by logical formula is (thruth values)
e true for all possible truth values

i.e. it is called tautology
e false for all possible truth values
i.e. it is called contradiction

» Propositions are sentences expressed in some language and can
be expressed in a canocinal form
x is P
x is the symbol of subject
P is the predicate
e.g. «Indianapolis is in Indiana»

» Logic operations are functions of two propositions and are
defined via thruth tables

E _II/\IVI_>

Fuzzy Logic
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Set operators

e Let X be universe of discourse (universal set)

ANB={xeX|xeAAx e B}
AUB={xe X |xe AV x e B}
A={xeX|x¢Al={xe X |(xe A}

ACBifandonlyif (x € A) = (x € B) forall x e X

Fuzzy Logic
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Inference rules

|
r Various forms of tautologies exist to perform

deductive inference (inference rules)

(aA(a— b)) — b (modus ponens)
(-bA(a— b)) — —a (modus tollens)
a—>b)A(b—c))—(a—c hypothetical syllogism
((

e Fuzzy Logic is an extension of bivalence logic

Fuzzy Logic

L.
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Basic principles

The Principle of Bivalence:

“Every proposition is either true or false.”

It has been formally developed by Tarski. ‘ga

i l'-_
AN

Alfred Tarski (1902-1983)

Y ukasiewicz suggested to replace it by
The Principle of Valence:

“Every proposition has a truth value.”

Propositions can have intermediate truth value,
expressed by a number from the unit interval [0, 1].

Jan tukasiewicz (1878-1956)

Fuzzy Logic

The multi-valued logic is to fuzzy set theory what classical logic
IS to set theory 28



Fuzzy Logic

Fuzzy Logic
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e In 1965, Zadeh proposed a logic with values in
[O, 1]
—a=1-—a,
a A b= min(a,b),
aV b = max(a,b).

¢ Membership operators
=g s X — X,—p(x) =1 — p(x),

pAp X = X(p A ') (x) = min{u(x), 1/ (x)},
pV ' X = X(p Vv p')(x) = max{u(x), 1 (x)}.

29



Lattice

Fuzzy Logic
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Definition

We define the following algebraicoperators on F(X):

(e A p")(x) def min{u(x), 1’ (x)} intersection (“AND"),
(10 v 1)(x) = max{pu(x). ' (x)} union (“OR"),
—p1(X) L 1(x) complement (“NOT").

1 is subset of 1/ if and only if u < 4.

Theorem

(F(X), A, V,) is a complete distributive lattice but no boolean
algebra.

30



Fuzzy Set operators

fuzzy complement two fuzzy sets
fuzzy intersection fuzzy union

Fuzzy Logic

A o
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T-norm and t-conorm

e Let A, B be Fuzzy subsets of X, i.e. A, B € F(X)

¥ Their intersection and union can be defined
pointwise using

(AN B)(x) = T(A(x), B(x)) where T:[0,1]* — [0,1]
(AU B)(x) = L(A(x), B(x)) where 1 :[0,1]* — [0,1].

T is a triangular norm (t-norm) <= T satisfies conditions T1-T4

| is a triangular conorm (t-conorm) <= | satisfies C1-C4

Fuzzy Logic

A o
4o
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T-norm and t-conorm

Fuzzy Logic

A o

Identity Law for all x,y,z € [0, 1], the following laws hold
TL: T(x,1)=x (AnX=A)
Cl: 1(x,00=x (Aub=A).

Commutativity
T2: T(x,y)=T(y,x) (AnB=BnNA),
C2: 1(x,y)=1(y,x) (AUB=BUA).

Associativity
T3: T(x, T(y.2)) = T(T(x,y), 2)
C3: L(x,L(y,2)) = L(L(x,¥). 2)

Monotonicity
y < z implies
T4: T(x,y) < T(x,2)
C4d: L(x,y) < L(x,2z2).

34



T-norm and t-conorm

= max(x, y)

y)

J—max (X?

= min(x, y)

y)

?

Tmin(X

()

¥
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¥
B0
X

A hatTal -
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J—sum(X?y):X+y_X'y

Tprod(Xay) =Xy




T-norm and t-conorm

x+y}

-
!

Liuka(x,y) = min{l

max{0, x +y — 1}

Tl’_uka(X: J/)

21607 Azzn4
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T-norm and t-conorm
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T-norm and t-conorm

Toa(xy) = {"““(X»y) f max(x,y) = 1 max(x,y) if min(x, y) = 0

0 otherwise

Loa(xy) = {

1 otherwise

Drastic Product and Sum

Fuzzy Logic

T 1< T<Thin, dmax <L <1 gforany T and L

38
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T-norm and t-conorm

t-norm T qin

t-norm T ks

Fuzzy Logic

PR, 3
X
0

t-norm T 504

t-norm T _1q

-
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T-norm and t-conorm

Y

t-conorm _L ax

t-conorm L¢,m

t-conorm Ly ks

Fuzzy Logic

PR, 3
N A
9 %

t-conorm 1 _q
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Genaralization

For 0 < p < oo and x, y € [0, 1], define

To(x,y) = max{l — (1 —x)P+ (1 — y)p)l/p? 0} ?
1,(x,y) = min {(xp + yP)L/P, 1}.

o

Yager norm

Fuzzy Logic

K7 g
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Genaralization of norms

Fuzzy Logic

Between |
. E t-Conorm
min and max ! (e, 1, %)
i Between
t-norm d
(<0,e,t>)

min and max

=) 1

Uninorm

=
L=
T

Sk = |'Jk - o

S 1 1

0 1 1 L] I I |I I
0 F.1 0.2 U.3+ 0.4 05 U? 07

s s
1 8, £ Sy S5

Parameters of Ordinal Sums

a; +(b; — a@)ﬂ(%,é—;) if(a:,y)E]ai,bi]r‘),

min(z, y) otherwise .

Ordinal sums
42



Fuzzy implications (a — b)
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Fuzzy implications (a — b)

Lol [v 1| le — ¥
1 | |

l 0 0

0 1 |

0 0 |

crisp: x EA=x€ B, fuzzy: xeu=xe
I(a,b) = —aVb [(a, b) = L(~ a, b)

I(a,b) =max{x € {0,1} | aAx < b} [l(a,b)=sup{x€[0,1] | T(a,x) < b}

Fuzzy Logic
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Fuzzy implications (a — b)

[(a,b) = L(~ a,b) may also be written as either

—
—
»

oy
~—

|

= —-aV (aAb) or
(maA-b)Vb.

—
—_
L

o py
~—

I

Fuzzy logical extensions are thus, respectively,

[(a, b) = L(~ a, T(a,b)).
[(a, b) = L(T(~ a,~ b), b)

Fuzzy Logic

©»
P

S-Implications

R-Implications
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S-Implications (a — b)

Name I(a, b) 1(a,b)
Kleene-Dienes | Imax(a, b) = max(1 — a, b) max(a, b)
Reichenbach | lym(a,b) =1 —a+ ab a+b—ab
tukasiewicz | Iy(a,b) = min(1, 1 — a+ b) min(1, a + b)
(b, ifa—=1 (b, ifa=0
largest [-1(a,p) =q1—a, ifb=0 da, ifb=0
|1 otherwise | |1, otherwise

Fuzzy Logic
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R-Implications (a — b)

Name Formula T(a,b) =
L ifa<
Godel (g b) = 41 Tash min(a, b)
b, ifa>b

1, if a<b

G lhod(a, b) =< - b

oguen  fprod(a. b) {b/a} ifa> b ’
tukasiewicz I (a,b) =min(l, 1 —a+b) max(0, a+ b—1)

b, ifa=1 .

largest [ (a,b) =< = " _ not defined
1, otherwise

Fuzzy Logic
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Linguistic variables

» Each linguistic variable is defined by quintuple
(x, T(x) , X', G, M)
e name x of the variable
E set T(x) of linguistic terms of x
E base variable X € IR

r syntactic rule G (grammar) for generating linguistic
terms

® semantic rule M that assigns meaning M(t) to every t €
T,i.e. m: T — F(X)

Fuzzy Logic
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Example of linguistic variables

¥ x = speed a linguistic variable with X = [0, 100]

¢ Term set T(x) of x
¥ T(speed) = {VERY Slow, Slow, Moderate, Fast}

¥ G of generating the names (or the labels) of the elements
in T(speed) is quite intuitive

¥ Semantic rulse M

B M(slow) = the fuzzy set for «a speed below about 40 miles per
hour (mph)» with membership function U,

B M(moderate) = the fuzzy set for a «speed close to 55 mph» with
memberhip function Uy derate

# M(Fast) = the fuzzy set for a «a speed above about 70 mph»
with memberhip function lip ¢

Fuzzy Logic
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Linguistic Data

Linguistic Data

A

B

C

1|large

very large

medium

2| 2.5

medium

about 7

small

7, 8]

3([3, 4]

computing with
words

Fuzzy Logic
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“The mean w.r.t. A
is approximatly 4.

linguistic
modeling

)

linguistic

approximation

<

Fuzzy Data
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statistics with

fuzzy sets

mean of attribute A
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Example of application

» Consider the problem to model the climatic
conditions of several towns
E A tourist may want information about tourist attractions

e Assume that linguistic random samples are based on
subjective observations of selected people, e.g.
climatic attribute clouding

linguistic values cloudless, clear, fair, cloudy, . . .

Fuzzy Logic
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Example of application

e Linguisti Modeling by an expert (Fuzzification)

The attribute clouding is modeled by elementary linguistic values, e.g.

cloudless — sigmoid(0, —0.07)
clear — Gauss(25, 15)
fair — Gauss(50, 20)
cloudy + Gauss(75, 15)
overcast +— sigmoid(100, 0.07)
exactly)(x) +— exact(x)

approx)(x

) — Gauss(x, 3)
between(x, y) + rectangle(x, y)
y)

approx__between(x, y) + trapezoid(x — 20, x, y, y + 20)

Fuzzy Logic

where x, y € [0,100] C IR.

A o
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Example of application

Fuzzy Logic
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0.4

0.2¢

0.5
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e Linguistic Modeling by an expert (Fuzzification)

trapmf

gbellmf

trimnf

gaussmf

gauss2mf

smif

psigmf

pimnif

Supporto
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Linguistic hedge
¢ Some popular linguistic hadge (modifier)
& VERY in «VERY Young

B Concentration

.UCON(A)(X) = (HA(X))Z
e Dilation

UDIL(A) (x) = (.UA (X))l/z

B Intensification

:
{2(us0)° u, () €[0,0.5]

HINT(4) (x) =4 ,
1 —2(1—pu,(x))". otherwise

\

Fuzzy Logic
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Fuzzy Relations

e Crisp relation

{1, if and only if (x1,...,x,) € R,

0., otherwise.

¢ Fuzzy Relation

E is a fuzzy set defined on tuples (x;, ..., x.) that may
have varying degrees of membership within the
relation

¥ The membership grade indicates strength of the present
relation between elements of the tuple

Fuzzy Logic

L.
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Fuzzy Relations

Fuzzy Logic
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¢ Cartesian Product

/‘LAlx...XAn(X].:' * .y Xﬂ) — —l_ (/‘LAl (X].):v .o 1/“LAH(XH))

Membership function

e 2D

paxs(x,y) =T [pa(x), ps(y)],

Vxe X, VyeY.

58



Fuzzy Relations

Cartesian product F(X x Y) with t-norm = min

Fuzzy Logic
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Fuzzy Relations

e Projection

[R L Y](y) = max R(x)

Xy

(x1,  x0,. x3) | R(x1,x2,x3) Rpla,x) Rialx,x3) Ralx,x3)  Rilx1) Ro(x)  Rz(x3)
0 0 0 04 0.9 1.0 05 1.0 09 1.0
0 0 1 0.9 0.9 0.9 0.9 1.0 0.9 0.9
0 0 2 0.2 0.9 0.8 0.2 1.0 0.9 1.0
0 1 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0 1 1 0.0 1.0 0.9 05 1.0 1.0 0.9
0 1 2 0.8 1.0 0.8 1.0 1.0 1.0 1.0
1 0 0 05 0.5 05 05 1.0 09 1.0
1 0 1 0.3 0.5 05 0.9 1.0 0.9 09
1 0 2 0.1 0.5 1.0 0.2 1.0 0.9 1.0
1 1 0 0.0 1.0 05 1.0 1.0 1.0 1.0
1 1 1 05 1.0 05 05 1.0 1.0 0.9
1 1 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0

All possible projections

Fuzzy Logic



Fuzzy Relations

e Projection

R(x1, x2,x3) R12(x1, x2)

S
oS
o

0.4
0.9 max[R(0, 0,0), R(0,0,1), R(0,0,2)] = 0.9
0.2

1.0
0.0 max[R(0, 1,0), R(0,1,1), R(0,1,2)] = 1.0
0.8

0.5
0.3 max[R(1,0,0), R(1,0,1), R(1,0,2)] = 0.5
0.1

0.0
0.5 max[R(1,1,0), R(1,1,1), R(1,1,2)] = 1.0
1.0

—
HHHHHI—LGDDDDD&S

== O O OO OO
PN = OIMN = OMN = O NP O

Projection Ry,

Fuzzy Logic
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Fuzzy Logic
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Binary Fuzzy Relations

e Binary Fuzzy Relations
E R(X,Y)

¢ Standard composition

[P o Q](x,z) = sup min{P(x,y), Q(y,z)}, Vxe X, Vze 7/
yeyY

If Y is finite supe operator is replaced by max (max-min compaosition)

e Associativity

[P(X,Y)]oQ(Y,Z)]oR(Z,W)=P(X,Y)o[Q(Y,Z)o R(Z, W)]

62



Example of composition

max-min composition

21607 Azzn4
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Example of composition

e Problem

E The three students are planning to take one of the courses
based on their different preferences.

e By fuzzy relations we help them in their decision making

¥ Serts
e X = {Peter, Mary, John}
e Y = {Theory, Application, Hardware, Programming}

# Z = {Fuzzy Theory, Fuzzy Controls, Neural Networks, Expert
Systems}

Fuzzy Logic
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Example of composition

Theory Applica Hardwa Progra

tion rer mming
Peter 0.2 1 0.8 0.1
Mary 1 0.1 0 0.5
John 0.5 0.9 0.5 1
P(X,Y)
FT FC NN ES
Theory 1 0.5 0.6 0.1
= Application 0.2 1 0.8 0.8
0
> Hardware 0 0.3 0.7 0
E Programming 0.1 0.5 0.8 1
L

P(Y,2)

f <]
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Example of composition

FT FC NN
Peter 0.2 1 0.8
Mary 1 0.5 0.6
John 0.5 0.9 0.8

P(X,Y) o P(Y,2)

Fuzzy Logic
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Example of composition

Consider the following fuzzy relations for airplanes:

e relation A between maximal speed and maximal height,

e relation B between maximal height and the type.

Al h h h B e
ss| 1 2 0 1 =
hh |1 0
|1 1 0 e
5| 0 1 1 h2 P
21 0 3 1 3 '

Types of Airplanes (Speed, Height, Type)

Fuzzy Logic
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Example of composition

matrix multiplication scheme flow scheme
S1 .
1 0
A o B| 9 1
0 .9
1 2 0|1 .2
1 1 09 1
O 1 119 1
O 3 13 9
(Ao B)(s4, t2) = max{min{.3, 1}, min{1, .9}}
IS A o B speed-type relation =.9
?
9 Types of Airplanes (Speed, Height, Type)
2
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BR on single set

An example of R(X, X) defined on X = {1,2,3.4}.

Two different representation are shown below.

N

oo O W W
;= O o

O o © 4+

LW W N =

Fuzzy Logic

X ” .
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BR on single set

A crisp relation R(X, X) is called
e reflexive if and only if Yx € X : (x,x) € R,

e symmetric if and only if Vx,y € X : (x,y) € R < (y,x) € R,

e transitive if and only if (x,z) € R whenever both (x,y) € R and
(y,z) € R for at least one y € X.

Fuzzy Logic

reflexivity symmetry transitivity

A o
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Properties of Fuzzy Relations

Fuzzy Logic

VRt o

A fuzzy relation R(X, X) is called
o reflexive if and only if Vx € X : R(x,x) =1,
e symmetric if and only if Vx,y € X : R(x,y) = R(y, x),
e transitive if it satisfies

R(x,z) > max min{R(x,y), R(y,z)}, V(x,z)e X?
ye

A FB Relation that is reflexive, symmetric and transitive is called
Fuzzy Equivalence Relation

71



Fuzzy Logic
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Approximate Reasoning

¢ Rules of inference govern the deduction of a
proposition q from a set of premises {p;, p,, ---,

Pn}

» Four principal modes of fuzzy reasoning
e Categorical reasoning
e Qualitative reasoning
E Syllogistic reasoning

e Dispositional reasoning

72



Qualitative Reasoning

e IF-THEN rules in which the pre-conditions and
consequences involve fuzzy or linguistic variables

Ry IFxisA;andyis B; THEN z is C,
R,: IFXxisA,andyis B, THEN z is C,

Ry IFxisA,andyis B, THEN z is C,

Fuzzy Logic
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Fuzzy Control Systems

¢ Basic idea of FLC

E incorporate the expert experience) by fuzzy control
rules rather than a complicated dynamic model

///////////////////

l
|

. \ ? | v e e ——

L d
-
v
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A

Parking a car backwards

Fuzzy Logic
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Example of Fuzzy Controls

Balance an upright standing pole by moving its
foot.

Lower end of pole can be moved unrestrained along
horizontal axis.

Mass m at foot and mass M at head.
Influence of mass of shaft itself is negligible.

Determine force F (control variable) that is
_ necessary to balance pole standing upright.

That is measurement of following output variables:

e angle 6 of pole in relation to vertical axis,

déb

e change of angle, i.e. triangular velocity 6 = o

Both should converge to zero.

Fuzzy Logic

e Cartpole problem -



Classical solution

Differential equation of cartpole problem:
(M+m)sin®0-1-0+m-I-sinfcosf-0°—(M+m)-g-sinf = —F -cos 0
Compute F(t) such that 8(t) and 6(t) converge towards zero quickly.

Physical analysis demands knowledge about physical process.

Cartpole problem

Fuzzy Logic

©»
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Fuzzy partitioning

left fuzzy set:
,u,gl) . [a, b] — [0, 1]

1, if x < xq
X —
1 —min{e-(x —x1), 1} otherwise

right fuzzy set:
,u,gl) - [a, b] — [0, 1]

1, if x,, < x
X
1 — min{e - (x5, — x), 1} otherwise

Fuzzy Logic

K7 g
SR
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Fuzzy partitioning

Fuzzy Logic

o
&9

0
nb | nm | ns| az | ps | pm | pb
nb ps | pb
nm pm
ns || nm ns | ps
az || nb | nm | ns| az | ps | pm | pb
pS ns | ps pm
pm nm
pb nb | ns

19 rules for cartpole problem, often not necessary to determine all
table entries e.g.




Fuzzy Controller

knowledge
T base

\ \
fuzzification decision defuzzification
interface fuzzy logic fuzzy interface
not not
fuzzy measured controller fuzzy

output

values controlled
system

Fuzzy Logic
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Fuzzy Controller

Fuzzification interface
e receives current input value (eventually maps it to suitable
domain),
e converts input value into linguistic term or into fuzzy set.

Knowledge base (consists of data base and rule base)

e Data base contains information about boundaries, possible
domain transformations, and fuzzy sets with corresponding
linguistic terms.

e Rule base contains linguistic control rules.

Decision logic (represents processing unit)
e computes output from measured input accord. to knowledge base.

Defuzzification interface (represents processing unit)
e determines crisp output value
(and eventually maps it back to appropriate domain).

Fuzzy Logic

A o
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Fuzzy knowledge base

Fuzzy Logic

VRt o

¥ General schema

Rule 1:
Rule 2:

Rule r:
Fact:

if Xis My, then Y is \;
if X is M, then Y is N\,

if Xis M,, thenY is N,
Xis M’

Conclusion:

Y is NV

81



Inference engine

Fuzzy Logic

VRt o

. \f{"

e This is the kernel of the FLC in modelling human
decision making within the conceptual framework
of FL and approximate resoning

¢ Generalized modus ponens (categorical resoning)

Premise 1: IF X iISATHEN yis B
Premise 2: X is A

Conclusion: y is B’

82



Inference engine

Fuzzy Logic

K g

-%

e In general a fuzzy control rule (Premise 1) is a
fuzzy relation which is expressed as a fuzzy
implication

R=A-1B

¥ conclusion can be obtained as

B'=A"o(A - B)
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Approximate Reasoning

3 Fuzzy Rules

Fuzzy Logic
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Inference (Mamdani)

IF (x, is 4,) AND (x, is 4,) THEN y is B
;fb(_1*j=(ﬂjfx*)ﬂﬁgff*))ﬂﬁa(}’)

i A A
1T : (%) 1 1 &
AN R A () , B
! i R TATE minlminl A )t x ) g (v))
0 E > o—& > 0 >
x, X X, X ¥
&
h A A
1 J | "H‘ilrxj’j 1 1 A ‘Hb
YA Y e , .
i S — - ——— - p—— vy v ) =minl g I.f-ﬁfzrxij*iﬁfbf yi
0 ; > 0 ’ > 0 >
X, X X, X y
& .

Fuzzy Logic

Mamdani based inference
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Approximate Reasoning

Fuzzy Logic

PR, 3
X
0

Rule evaluation for Mamdani-Assilian controller.

Ipositive small approx.
1 Zero
031 W |
. 0 0.
0 15 2530 45 8
] positive medium approx.
1 Zero
0.67 A ity S e N
| .
_ 0
0 15 2530 45 8

Input tuple (25, —4) leads to fuzzy output.

Crisp output is determined by defuzzification.

Mamdani controller

A w, ow
Ipositive small

F

0 3 6 9

positive medium
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Defuzzification

IF x;  A4; AND x, © A, THEN vy cC B,

Gl )]
A, Hy(x )
0 0

My Y

v, =min (g, (x, ), g,0x;0)

v, = min |::,H_; ij ), :“drx.? ;:I

IF x; @ Ay AND x, ©c A4, THEN vy cC B,

Fuzzy Logic

Inference and defuzzification



Defuzzification - Max Criterion Method

Choose an arbitrary y € Y for which 5, P"% reaches the maximum

membership value.

Advantages:

e Applicable for arbitrary fuzzy sets.
e Applicable for arbitrary domain Y (even for Y # R).

Fuzzy Logic

©»
P
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Defuzzification - Mean of Maxima (MOM)

Preconditions:

(i) Y is interval

(i) YMax={y €Y |Vy €Y #ii’fﬁﬁn(f) < gf}pl:;n( )} is
non-empty and measurable

(iii) Ymax is set of all y € Y such that 3 P is maximal

Crisp output value = mean value of Yax.

if YMmax IS finite: if Ymax is infinite:
1 d

n = |Y | Z Vi n = f}’EYMaxy Y
MaxT i€ Yiax Jye Viga, Y

MOM can lead to discontinuous control actions.

Fuzzy Logic

©»
P
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Defuzzification - Center of Gravity (COG)

Fuzzy Logic

K7 g
SR

Same preconditions as MOM method.

n = center of gravity/area of u

If Y is finite, then

If Y is infinite, then

output
le...,xn

n = Z_ny yYi- #iij}plﬁ'n (.yf)

tput
Zy,E Y!‘Lg‘.lljaplajxn (-y")

ey () dy

output

eyt () dy
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Example - Engine Idle Speed Control

air bypass to

[rom the air cleaner the throttle auxiliary air regulatar

air flow sensor

©

™,
DIGIFANT
x A / |7 ontrol device
/ throttle
banking up
flap compensation MM
ﬂap toO dan’]p
brations .. .
% VIbTations to the intake valves
o
|
>
N
N
>
L
Q,
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Example - Engine Idle Speed Control

fuzzy controller

AARSRENV

REV0_L(C

dAIRCON

data |
prep|i.

| and

state | gREv
detect.

MFC |gREV

activ.

l meta controller

M
FC
C

AARCUI

—

contro
range
limit.

AARCURIN

}

pilot value for air conditioning system

Fuzzy Logic
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Example - Engine Idle Speed Control

1.00
0.75 +
0.50 —nb nm ns zZr pS pm pb
0.25 +
0 | |
—70 —50 —30 —10 10 30 50 70

Number of revolutions - dREV

Fuzzy Logic

o
&9
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Example - Engine Idle Speed Control

1.00
0.75 +
050 -Lhb nm zr pm pb
0.25
0 | | | | | | | |
-400 -70 -40 -30 -20 20 30 40 70 -400

Number of revolutions - gREV

Fuzzy Logic

o
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Example - Engine Idle Speed Control

1.00
0.75 -
0.50 4- nh

0.25

0
—-25 —-20 —-15 —-10 -5 0 5 10 15 20 25

Change of Current for Auxiliary Air Regulator - dAARCUR

Fuzzy Logic

o
£
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Example - Engine Idle Speed Control

gREV
nb nm ns az ps pm pb
nb | ph pb pb pm pm ps ps
nm | ph pb pm pm ps ps az
ns | pb pm ps ps az az az
dREV az | ps ps az az az nmm ns
ps | az az az ns ns nm nb
pm| az ns ns ns nb nb nh
pb | ns ns nm nb nb nb nh

O

S  If the deviation from the desired number of revolutions is negative Rule Base

A " - " -

>  small and the gradient is negative medium,

E then the change of the current for the auxiliary air regulation should

- be positive medium.

S 100



Example - Engine Idle Speed Control

dAARCUR

20
L5
10

Performance Characteristics

Fuzzy Logic

101
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Fuzzy Control

Difference to Mamdani controller:
e no fuzzy partition of output domain Y/,

e controller rules Ry, ..., R are given by

g g

R, :if & is A,(-llz and ... and &, is AE:,]-
then n, = £,(&1,...,&n),

fp o Xy X ...xX,— Y.

o Generally, f, is linear, i.e. f,(x1,...,Xxn) = a[(jr) +>0 af(r)x,-

Takagi-Sugeno controller

Zf—l’zl Qyp - f.-f’(xla s JXH)

k
Zrzl 7

Crisp output

Fuzzy Logic

?7:

K7 g
SR
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Example

Fuzzy Logic

: If(flIS N\ thenn1:1-£1—|—0.5-£2—i—1

3 9

cif & s / and & is N then7, = —-0.1-& +4-& +1.2
3 9 4

13

:if & s /\ and & is i thenng—{]g & +07-6&+9

|
3 I9'11

cif & s { and & is é thenn4_02 £&1+0.1-&+0.2

11

Takagi-Sugeno controller
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Fuzzy data analysis

¢ FUZZY Data Analysis

e Fuzzy Techniques for the analysis of (crisp) data

Fuzzy Clustering

» FUZZY DATA Analysis

e Analysis of Data in Form of Fuzzy Sets

e Random Sets, Fuzzy Random Variables

Fuzzy Logic

A o
47
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Fuzzy Clustering

¢ Unsupervised learning task

e goal is to divide the dataset such that both constraints
hold

objects belonging to same cluster: as similar as possible

e objects belonging to different clusters: as dissimilar as
possible

e The similarity is measured in terms of a distance
function

e The smaller the distance, the more similar two data

Fuzzy Logic

tuples

o
g7
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Distance

¢ Distance d

Definition

d : IRP x IRP — [0, 00) is a distance function if Vx,y,z € IR”:
(i) dx,y)=0&x=y (identity),
(i) d(x,y)=d(y,x) (symmetry),

(iii) d(x,z) <d(x,y)+d(y,z) (triangle inequality).

Minkowski family

(x,y) = (Z |Xg — J/d|k)

Fuzzy Logic

VRt o
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Algorithms

e Partitioning algorithms

E given c € IN, find the best partition of data into ¢
groups

e usually the number of (true) clusters is unknown

E must specify a c-value

e Hierarchical techniques
E organize data in a nested sequence of groups

E must specify a cut threshold

Fuzzy Logic

o
£
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Hard c-means

¢ Objective function dj = d(c;, x;)
S distance
In(X, Un, €)= _ > uid;
i=1j=1
1, if X; € [;
Ujj = _ Partition matrix
0, otherwise.

» Each data point is assegned exactly to one cluster
and a every cluster must contain at least one data
point

Fuzzy Logic
<
M
~—
=
E
——

) M 0
£
—
|
—
O
=
o
<
M
—~—
—
A
——
Yy
=
V
o

o
4
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Hard c-means

¥ Hard c-means minimizes J, by alternating
optimization (AO)
e The parameters to optimize are split into 2 groups

e One group is optimized holding other one fixed (and
vice versa)

e This is an iterative update scheme: repeated until
convergence

Fuzzy Logic

o
£

109



Example of c-means

. ] . ®
- .
. e s ®
. @®
L] . ] L]
- -
. -
. L L Lo}
o]
] . o s O =
L L]
%) .
.5) o o
(o) o) P
—
>
N
N
>
L
.,

o O
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Example of c-means

Given a symmetric dataset with two clusters.
Hard c-means assigns a crisp label to the data point in the middle.

Fuzzy Logic

111
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Example of c-means

hard c-means fuzzy c-means

In the fuzzy partition it is associated with the membership vector
(0.5, 0.5)T (which expresses the ambiguity of the assignment)

Fuzzy Logic
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Fuzzy c-means

Fuzzy Logic

K g
P

¢ Obijective function

Je(X, Up, C) = ZZ u,‘;’}"dﬁ
i=1 j=1

r Subject to

dU — d(cf': XJ')

distance

m > 1 is called the fuzzifier

113



Optimization

v J; is alternately optimized

e optimize U for a fixed cluster parameters
e optimize C for a fixed membership degrees

Lagrange function to be minimized

LX, U, CN) =Dy ufdi+D N (1 -2 ”U)
j=1 =1

i=1j=1
=J(X,Us,C)
Bezdek, 1981

‘% 2

_m n -
S d& . 2=l Ui X;
ﬁ UU - 2 I _,?:1 UF?
g ZC 1—m U
L k=1 Ykj

o
&%

First step Second step
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Example of fuzzy c-means

Fuzzy c-Means

Fuzzy Logic

Iris data set

115

o
& oex



Data Integration

¢ Data integration by fuzzy similarity-based
hierarchical clustering

r multi-view integration methodology for identifying
patient subgroups from different omics information

E e.g., Gene Expression, Mirna Expression, Methylation

» For each view, a dendrogram is obtained by using
a hierarchical clustering based on a fuzzy
equivalence relation with tukasiewicz valued
fuzzy similarity
e https: //bmcbioinformatics.biomedcentral.com /articles/

10.1186/512859-020-03567-6
B Multi-Omics-Cancer-Benchmark GitHub repository

Fuzzy Logic

Ciaramella et al. BMC Bioinformatics 2020, 21(Suppl 10):350
https://doi.org/10.1186/s12859-020-03567-6 116
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Data Integration

a) Data preparation b) Data normalization and c¢) Multi-Omics Hierarchical
feature selection Agglomerations

ﬁ

Data

Gene Expression

d) Data Integration

DNA methylation

DATA NORMALIZATION
FEATURE SELECTION
T
v

miRNA

e) Clustering

Fuzzy Logic
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Data Integration

Omics data Fuzzification Similarity matrix  Transitive Closure

X1I:>Y1I:>S1|::>C1

Aggregation

Xo [==D| va |0 S0 || ©n

Fuzzy Logic

Workflow of the fuzzy based hierarchical clustering
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Data Integration

Algorithm 1: Min-transitive closure

1: Input: relation S;

2. Qutput: transitive relation C; = ST

3: Elaborate:
1. Compute S = S; U (S; 0 §;)
2.if S} # S; replace S; with S and go to step 1
else C; = ST = S¥ and the algorithm terminates.

Algorithm 2: Combination of dendrograms

1: Input C;, 1 <i < L L input similarity matrices (dendrograms)
2: Qutput similarity matrix (dendrogram) A
1. Aggregate the similarity matrices to a final similarity matrix
A = Aggregate (C1,Cy,...,CL)
a. Let A* be the identity matrix
b. For each C; calculate e A* = A* U (A* o C))
c. If A* is not changed A = A* and goto step 3 else goto step 1.b
3: Create the final dendrogram from A

Fuzzy Logic
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Data Integration
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Data Integration
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Data Integration

Fuzzy Logic
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Fig. 7 Performance of the algorithms on ten multi-omics cancer datasets. For each plot, the x-axis measures
the differential survival between clusters(-log10 of logrank’s test P-value), and the y-axis is the number of
clinical parameters enriched in the clusters. Red vertical lines indicate the threshold for significantly different

survival (P-value < 0.05)
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Data Integration

Fuzzy Logic
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Fig. 9 Summarized performance of the algorithms across ten cancer datasets. For each plot, the x-axis
measures the total differential prognosis between clusters (sum across all datasets of —log10 of logrank’s test
P-value), and the y-axis is the total number of clinical parameters enriched in the clusters across all cancer
ty pes. (a—c) Results for single-omic datasets. d Results when each method uses the single omic that achieves
the highest significance in survival. @ Same with respect to enrichment of clinical labels
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ANFIS

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

v v A4 va v
A SRR

A;

B,
y

B, i1

Xy

Adaptive neuro fuzzy inference system

Fuzzy Logic
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FRNN
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K k
o j=1 Wj HBj(X)
Js(x) = 2?;1 Upi(X)
Hp1(y)

Uk (y)

Fuzzy Logic

i (%) = /?\C/uAg<xi) o R/

i=1 j=1

K7 g



4B ClassC,
- Class C,

Granulation

FBFNN

21607 Azzn4

%
V7

o



Some results

IRIS data set Memberships
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Norm generalization

Fuzzy Logic
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Neuron generalization
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Uninorm
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Structured data

Inputgraph
Output network

state

Encoding network

Graph mapping fuzzy state

Uninorm \ aix)
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