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Motivation

All complex human actions are decisions based on such 

concepts:

driving and parking a car

financial/business decisions

law and justice

giving a lecture

listening to the professor/tutor

Computers need a mathematical model to express and 

process such complex semantics

Concepts in classical mathematics are inadequate for 

such models

Soft Computing
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Any notation is said to be fuzzy when its meaning 

is not fixed by sharp boundaries 

the statement can be applied fully, to a certain degree, 

or not at all

the gradual degrees of this membership is also called 

fuzziness 

very, rather, or almost

Fuzziness vs Uncertainty
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Boolean logic 
Boole (1854)  

Classical set theory (1900) 
traditional sets (boolean belonging) and set operations

Multivariate logic
Russell (1920)

Lukasiewicz (1930)

Fuzzy Logic theory 
Lotfi Asker Zadeh Zadeh (1965) 

extension of traditional sets (non boolean belonging) and operations 
on the elements

In brief …
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Type-2 fuzzy sets – Zadeh (1975)

Intuitionistics fuzzy sets – Atanassov (1986)

Rough sets – Pawlack (1991)

Neutrosophic logic – Sarandache (1998)

Granular computing – Pedrycz et al. (2001)

Explainable Fuzzy Systems – …

In brief …
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Any notation is said to be fuzzy when its meaning is 
not fixed by sharp boundaries 

the statement can be applied fully, to a certain degree, or 
not at all

the gradual degrees of this membership is also called 
fuzziness 

very, rather, or almost

Sorites Paradox

Fuzzy set theory does not assume any threshold!

Fuzzy sets
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Uncertainty describes the probability of a well-

defined proposition

Rolling a die will either lead to exactly 6 or not, but not 

something around 6

Uncertainty is different from Imprecision

Uncertainty comes e.g. from randomness or subjective belief

There are lots of non-standard calculi for handling 

uncertainty e.g.:

belief functions

possibility theory

Uncertainty
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Lotfi A. Zadeh’s Principle of Incompatibility

Principle of Incompatibility
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Crisp set

Collection of distinct objects

Let X be a universe of discourse and A crisp set   

Characteristic function

Crisp Sets

𝜇𝐴 𝑥 = ൞

1 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 ∈ 𝐴

0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 ∉ 𝐴

𝜇𝐴: 𝑋 → {0,1}
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Fuzzy set

Membership function 

generalization of the characteristic function

grade (or degree) of membership of x in A

the degree that x belongs to A

Fuzzy Sets

𝐴 = 𝑥, 𝜇𝐴 𝑥 | 𝑥 ∈ 𝑋

𝜇𝐴: 𝑋 → [0,1]
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Membership degrees

Membership function

Representing young in “a young person”

Body Height of 4 Year Old Boys
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Membership degrees

Membership function

Fuzzy set μ characterizing velocity of rotating hard disk

𝑆𝑢𝑝𝑝(𝐴) = 𝑥 ∈ 𝑋| 𝜇𝐴 𝑥 > 0

𝐶𝑜𝑟𝑒(𝐴) = 𝑥 ∈ 𝑋| 𝜇𝐴 𝑥 = 1

[a,d]

[b,c]

𝐻𝑒𝑖𝑔ℎ𝑡(𝐴) = sup
𝑥∈𝑋  𝜇𝐴 𝑥



Fu
z
zy

 L
o
g

ic

16

Singleton

A fuzzy set A whose support is a single point in X 

Crossover 

The element x in which the membershio is 0.5

Representation of a fuzzy set

Membership function

𝐴 = ൗ𝜇1 𝑥1 + ൗ𝜇2 𝑥2 + ⋯ ൗ+ 𝜇𝑖 𝑥𝑖 + ⋯ + ൗ𝜇𝑛 𝑥𝑛 = ෍

𝑖=1

𝑛

Τ𝜇𝑖 𝑥𝑖

𝐴 = න
𝑋

𝜇𝐴(𝑥)/𝑥
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Fuzzy sets are relevant in three types of 

information-driven tasks

classification and data analysis

decision-making problems

approximate reasoning

These three tasks exploit three semantics of 

membership grades

similarity

preference

possibility

Semantic of Fuzzy Sets
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There are traditional, linguistic, 

psychological, epistemological 

and mathematical schools

Traditional logic has been founded 

by Aristotle (384-322 B.C.)

Aristotlelian logic can be seen as 

formal approach to human 

reasoning

It’s still used today in Artificial 

Intelligence for knowledge 

representation and reasoning 

about knowledge

Traditional logic
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Logic 

studies methods/principles of reasoning

classical logic deals with propositions (either true or 
false)

The propositional logic handles combination of logical 
variables

Key idea - how to express n-ary logic functions with logic 
primitives

e.g. ¬ , ∧, ∨ , →

A set of logic primitives is complete if any logic function 
can be composed by a finite number of these primitives

e.g. {¬ ,∧,∨}, {¬,∧}, {¬ ,→}, {↓} (NOR), {|} (NAND)

Classical Logic
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When a variable represented by logical formula is (thruth values)

true for all possible truth values

i.e. it is called tautology

false for all possible truth values 

i.e. it is called contradiction

Propositions are sentences expressed in some language and can 
be expressed in a canocinal form

x is P

x is the symbol of subject 

P is the predicate

e.g. «Indianapolis is in Indiana»

Logic operations are functions of two propositions and are 
defined via thruth tables

¬ , ∧, ∨ , →

Inference rules
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Let X be universe of discourse (universal set)

Set operators 
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Various forms of tautologies exist to perform 

deductive inference (inference rules)

Fuzzy Logic is an extension of bivalence logic 

Inference rules
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Basic principles

The multi-valued logic is to fuzzy set theory what classical logic

is to set theory
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In 1965, Zadeh proposed a logic with values in 

[0, 1]

Membership operators 

Fuzzy Logic
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Lattice



Fu
z
zy

 L
o
g

ic

31

Fuzzy Set operators 
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T-norm and t-conorm

Let A, B be Fuzzy subsets of X, i.e. A, B ∈ F(X)

Their intersection and union can be defined 

pointwise using
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T-norm and t-conorm
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T-norm and t-conorm
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T-norm and t-conorm
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T-norm and t-conorm

Nilpotent Minimum and Maximum
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T-norm and t-conorm

Drastic Product and Sum
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T-norm and t-conorm
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T-norm and t-conorm
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Genaralization 

Yager norm 
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Genaralization of norms

Ordinal sums

Parameters of Ordinal Sums

Uninorm
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Fuzzy implications (𝑎 → 𝑏)
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Fuzzy implications (𝑎 → 𝑏)
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Fuzzy implications (𝑎 → 𝑏)

S-Implications

R-Implications
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S-Implications (𝑎 → 𝑏)
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R-Implications (𝑎 → 𝑏)
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Linguistic variables 

Each linguistic variable is defined by quintuple 

                         (x, T(x) , X , G, M)

name x of the variable

set T(x) of linguistic terms of x

base variable X ⊆ IR

syntactic rule G (grammar) for generating linguistic 

terms

semantic rule M that assigns meaning M(t) to every t ∈ 

T, i.e. m : T → F(X)
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Example of linguistic variables 

x = speed a linguistic variable with X = [0, 100]

Term set T(x)  of x
T(speed) = {VERY Slow, Slow, Moderate, Fast}

G of generating the names (or the labels) of the elements 
in T(speed) is quite intuitive 

Semantic rulse M 
M(slow) = the fuzzy set for «a speed below about 40 miles per 
hour (mph)» with membership function 𝜇𝑆𝑙𝑜𝑤

M(moderate) = the fuzzy set for a «speed close to 55 mph» with 
memberhip function 𝜇𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 

M(Fast) = the fuzzy set for a «a speed above about 70 mph» 
with memberhip function 𝜇𝐹𝑎𝑠𝑡
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Linguistic Data
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Example of application

Consider the problem to model the climatic 

conditions of several towns

A tourist may want information about tourist attractions

Assume that linguistic random samples are based on 

subjective observations of selected people, e.g.

climatic attribute clouding

linguistic values cloudless, clear, fair, cloudy, . . .
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Example of application

Linguisti Modeling by an expert (Fuzzification)
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Example of application

Linguistic Modeling by an expert (Fuzzification)
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Linguistic hedge

Some popular linguistic hadge (modifier)

VERY in «VERY Young»

Concentration

Dilation

Intensification   

𝜇𝐶𝑂𝑁(𝐴) 𝑥 = 𝜇𝐴 𝑥
2

𝜇𝐷𝐼𝐿(𝐴) 𝑥 = 𝜇𝐴 𝑥
1/2

𝜇𝐼𝑁𝑇(𝐴) 𝑥 = ቐ
ቄ2 𝜇𝐴 𝑥

2
𝜇𝐴 𝑥 ∈ 0, 0.5

1 − 2 1 − 𝜇𝐴 𝑥
2

. 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Fuzzy Relations

Crisp relation

Fuzzy Relation 

is a fuzzy set defined on tuples (x1, . . . , xn) that may 

have varying degrees of membership within the 

relation

The membership grade indicates strength of the present 

relation between elements of the tuple
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Fuzzy Relations

Cartesian Product

2D 

Membership function 
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Fuzzy Relations

Cartesian product F(X x Y) with t-norm = min
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Fuzzy Relations

All possible projections

Projection
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Fuzzy Relations

Projection R12

Projection
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Binary Fuzzy Relations

If Y is finite supe operator is replaced by max (max-min composition)

Binary Fuzzy Relations 

R(X,Y) 

Standard composition

Associativity
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Example of composition

max-min composition
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Example of composition

Problem

The three students are planning to take one of the courses 

based on their different preferences. 

By fuzzy relations we help them in their decision making 

Serts

X = {Peter, Mary, John}

Y = {Theory, Application, Hardware, Programming}

Z = {Fuzzy Theory, Fuzzy Controls, Neural Networks, Expert 

Systems}
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Example of composition

Theory Applica

tion

Hardwa

rer

Progra

mming

Peter 0.2 1 0.8 0.1

Mary 1 0.1 0 0.5

John 0.5 0.9 0.5 1

FT FC NN ES

Theory 1 0.5 0.6 0.1

Application 0.2 1 0.8 0.8

Hardware 0 0.3 0.7 0

Programming 0.1 0.5 0.8 1

P(X,Y)

P(Y,Z)
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Example of composition

FT FC NN ES

Peter 0.2 1 0.8 0.8

Mary 1 0.5 0.6 0.5

John 0.5 0.9 0.8 1

P(X,Y) o P(Y,Z)
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Example of composition

Types of Airplanes (Speed, Height, Type)
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Example of composition

Types of Airplanes (Speed, Height, Type)
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BR on single set
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BR on single set
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Properties of Fuzzy Relations

A FB Relation that is reflexive, symmetric and transitive is called 

Fuzzy Equivalence Relation
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Rules of inference govern the deduction of a 

proposition q from a set of premises {p1, p2, …, 

pn}

Four principal modes of fuzzy reasoning 

Categorical reasoning 

Qualitative reasoning

Syllogistic reasoning  

Dispositional reasoning  

  

Approximate Reasoning
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IF-THEN rules in which the pre-conditions and 

consequences involve fuzzy or linguistic variables 

  

Qualitative Reasoning

R1: IF x is A1 and y is B1 THEN z is C1

R2: IF x is A2 and y is B2 THEN z is C2

. . . 

R1: IF x is An and y is Bn THEN z is Cn



Fu
z
zy

 L
o
g

ic

74

Basic idea of FLC 

incorporate the «expert experience» by fuzzy control 

rules rather than a complicated dynamic model 

Fuzzy Control Systems

Parking a car backwards
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Example of Fuzzy Controls

Cartpole problem
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Classical solution

Cartpole problem
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Fuzzy partitioning
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Fuzzy partitioning
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Fuzzy Controller
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Fuzzy Controller
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Fuzzy knowledge base

General schema
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Inference engine

This is the kernel of the FLC in modelling human 

decision making within the conceptual framework 

of FL and approximate resoning 

Generalized modus ponens (categorical resoning)

 Premise 1: IF x is A THEN y is B 

Premise 2: x is A’

--------------------------------------------

Conclusion: y is B’
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Inference engine

In general a fuzzy control rule (Premise 1) is a 

fuzzy relation which is expressed as a fuzzy 

implication

conclusion can be obtained as 

 

 

𝑅 = 𝐴 → 𝐵

𝐵′ = 𝐴′ ∘ (𝐴 → 𝐵)
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Approximate Reasoning

3 Fuzzy Rules
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Mamdani based inference
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Approximate Reasoning

Mamdani controller
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Inference and defuzzification
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Defuzzification - Max Criterion Method
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Defuzzification – Mean of Maxima (MOM)



Fu
z
zy

 L
o
g

ic

94

Defuzzification – Center of Gravity (COG)
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Example – Engine Idle Speed Control
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Example – Engine Idle Speed Control
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Example – Engine Idle Speed Control

Number of revolutions - dREV
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Example – Engine Idle Speed Control

Number of revolutions - gREV
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Example – Engine Idle Speed Control

Change of Current for Auxiliary Air Regulator - dAARCUR
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Example – Engine Idle Speed Control

Rule Base
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Example – Engine Idle Speed Control

Performance Characteristics 
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Fuzzy Control

Takagi-Sugeno controller

Crisp output
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Example

Takagi-Sugeno controller
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Fuzzy data analysis

FUZZY Data Analysis 

Fuzzy Techniques for the analysis of (crisp) data

Fuzzy Clustering

FUZZY DATA Analysis 

Analysis of Data in Form of Fuzzy Sets

Random Sets, Fuzzy Random Variables
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Fuzzy Clustering

Unsupervised learning task

goal is to divide the dataset such that both constraints 

hold

objects belonging to same cluster: as similar as possible

objects belonging to different clusters: as dissimilar as 

possible

The similarity is measured in terms of a distance 

function

The smaller the distance, the more similar two data 

tuples
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Distance

Distance d
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Algorithms

Partitioning algorithms

given c ∈ IN, find the best partition of data into c 

groups

usually the number of (true) clusters is unknown

must specify a c-value

Hierarchical techniques

organize data in a nested sequence of groups

must specify a cut threshold 
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Hard c-means

Objective function

Each data point is assegned exactly to one cluster 

and a every cluster must contain at least one data 

point 

distance

Partition matrix
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Hard c-means

Hard c-means minimizes Jh by alternating 

optimization (AO)

The parameters to optimize are split into 2 groups

One group is optimized holding other one fixed (and 

vice versa)

This is an iterative update scheme: repeated until 

convergence
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Example of c-means
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Example of c-means

Given a symmetric dataset with two clusters.

Hard c-means assigns a crisp label to the data point in the middle.
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Example of c-means

In the fuzzy partition it is associated with the membership vector

(0.5, 0.5)T (which expresses the ambiguity of the assignment)
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Fuzzy c-means

Objective function

Subject to 

distance

m > 1 is called the fuzzifier
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Optimization

Jf is alternately optimized

optimize U for a fixed cluster parameters

optimize C for a fixed membership degrees

Lagrange function to be minimized

First step Second step

Bezdek, 1981
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Example of fuzzy c-means

Iris data set
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Data Integration

Data integration by fuzzy similarity-based 
hierarchical clustering

multi-view integration methodology for identifying 
patient subgroups from different omics information

e.g., Gene Expression, Mirna Expression, Methylation

For each view, a dendrogram is obtained by using 
a hierarchical clustering based on a fuzzy 
equivalence relation with Łukasiewicz valued 
fuzzy similarity

https://bmcbioinformatics.biomedcentral.com/articles/
10.1186/s12859-020-03567-6

Multi-Omics-Cancer-Benchmark GitHub repository

Ciaramella et al. BMC Bioinformatics 2020, 21(Suppl 10):350

https://doi.org/10.1186/s12859-020-03567-6
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Data Integration
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Data Integration

Workflow of the fuzzy based hierarchical clustering
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Data Integration
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Data Integration

Data Integration approach
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Data Integration

Crisp Hierarchical Clustering vs Fuzzy based Hierarchical 

Clustering
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Data Integration
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Data Integration
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ANFIS

Adaptive neuro fuzzy inference system
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FRNN

R1

Rn

A1

An

.

.

.

B1

Bn

B

F
x1

F

.

.

.

Fuzzificazione                      

xn

Fuzzy Relation Neural Network Model

Relazioni                      Defuzzificazione                      Composizione                    
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…
…

…
…

…

…
…

…

… …
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Granulation

C1

C1

C1

C2

C2

x1

x2

Class C1

Class C2

FBFNN
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Some results

IRIS data set Memberships

Mackey-Glass chaotic time series Residum
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Norm generalization

t-norms and t-conorms

Ordinal sums

Parameters of Ordinal Sums

Chromosome
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Neuron generalization

Zimmermann and Zysno data 

set

FRNN inference system

AND/OR neuron based on OS
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Uninorm 

Uninorm representation Uninorm based neuron
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Structured data

state

fuzzy state

Relations

Uninorm

Graph mapping

State composition
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