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ML — Reinforcement Learning

What is Reinforcement Learning?

» Learning from interaction with an environment

e to achieve some long-term goal that is related to the state
of the environment

e The goal is defined by reward signal, which must be
maximised

Agent must be able to partially /fully sense the
environment state and take actions to influence the
environment state

The state is typically described with a feature-vector
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Atari game

Random

RL Demo
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Learning approaches

Paradigm

Supervised Unsupervised Reinforcement
Learning Learning Learning

Po (?JW) Po (ZC) o (CL‘S) Objective

-» Classification - Inference - Prediction

- Regression > Generation > Control Applications
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Prediction vs Control

Prediction
:

Control

x
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Setting

State/Observation _

using policy mg(als)

ML — Reinforcement Learning

Ve
Y
o



Agent and environmet
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Markov Decision Process (MDP)

State space Action space
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Reward
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Discount factor
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r We want to be greedy but not impulsive

e Implicitly takes uncertainty in dynamics into
account

r Mathematically

r V<1 allows infinite horizon returns

T
G(st,au) = Z V' R(St47; Gttr)
7=0
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Solving an MDP

¢ Obijective

J(T‘-) — EatNW('|8t),8t+1NT('|8t,at),80NTo

T = argmax J(m)
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State

» Experience

E sequence of observations, actions, rewards

O1,r1,4d1,.--,dt—-1,0t, I't

e State

B summary of experience
st = f(o1,r.a1....,ac—1, O, It)

E In a fully observed environment

st = f(o¢)
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Major Components
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¢ An RL agent may include one or more of these
components
e Policy
Agent’s behaviour function

e Value function

how good is each state and/or action

B Model

Agent’s representation of the environment
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Policy

e Policy

E agent’s behaviour

E It is a map from state to action

e Deterministic policy
a = m(s)
r Stochastic policy
w(a|s) = P|als]
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Value function

¢ A value function

e prediction of future reward

How much reward will | get from action a in state s ¢

¥ Q-value function

E expected total reward
from state s and action a
under policy T

with discount factor 7

£

=

~
A
A

) = It [rt—|—1 + Y42 T "}«’2rt+3 I ... I S. 3}
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Bellman equation
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r Value functions decompose into a Bellman
equation

Q" (s,a) =Eg [r + Q™ (s, a") | s. 3}

e Optimal value

Q*(s,a) = max QR™(s.a) = Q™ (s, a)

m*(s) = argmax Q*(s, a)
=)
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Optimal value

r Optimal value maximises over all decisions

2
Q*(s.a) = rrr1 +7y max rpio +9° max rpaz + ...

ar41 dr4-2
*
= 41 7 max Q™ (St+1.at+1)
t+1

Formally

Q*(S’ 3) — -4]5f r —+ Y ma:,-:“;]x Q*(SFT 3;) | s.a
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Model

¢ Model

e learnt from experience
E acts as proxy for environment
e planner interacts with model

E e.g. using lookahead search

I [ \ ) %
observation 'lf; die B N TE Y SN I M action
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Approaches to Reinforcement Learning

¢ Value-based RL

e Estimate the optimal value function

Q(s. a)

e This is the maximum value achievable under any policy

e Policy-based RL

e Search directly for the optimal policy *

e This is the policy achieving maximum future reward
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Approsches to RL

¢ Model-based RL

e Build a model of the environment

e Plan (e.g. by lookahead) using model

¢ Deep RL

¥ Use deep neural networks to represent
Value function
Policy
Model

e Optimise loss function by stochastic gradient descent

ML — Reinforcement Learning
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VB RL: Q-Networks

ML — Reinforcement Learning

Q*(s,a) = Ey [r +7 max Q*(s",a) | s, a]

R(s,a.w) ~ Q7(s, a)

Q(s,a,w)

T

~)

o —— -

Bellman equation

Q(s,a;,w) --- Qfs,a_.w)

il
A~

w

2
| = (r + max Q(s’,a',w) — Q(s, a,w))

MSE loss
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VB RL: Q-learning

ML — Reinforcement Learning

e Optimal Q-values should obey Bellman equation

Q*(S, 3) — Mo

r+ 7 max Q(s’.a')" | s, a

r+v max Q(s’,a’,w) target
f

d

| = (f"‘ﬁf maXQ
d

(5’, a. w) — Q(s, a, w)) ;

MSE

21



VB RL: DQN

action

state
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VB RL: DQN in Atari

32 4x4 fileers

AE¢ hidden unics Fully-eonnected linear
output layer
|é 8xB filters
4xB4x84
Stack of 4 previous _ | Fully-connected layer
frames Cenveolutional layer Convolutional layer of rectified linear units
of rectified linear unies of rectified linear units

End-to-end learning of values Q(s, a) from pixels s

Input state s is stack of raw pixels from last 4 frames

ML — Reinforcement Learning

Output is Q(s, a) for 18 joystick/button positions
Reward is change in score for that step



Atari

n

: DQN results

VB RL
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VB RL: DQN in Atari

32 4x4 fileers

AE¢ hidden unics Fully-eonnected linear
output layer
|é 8xB filters
4xB4x84
Stack of 4 previous _ | Fully-connected layer
frames Cenveolutional layer Convolutional layer of rectified linear units
of rectified linear unies of rectified linear units

End-to-end learning of values Q(s, a) from pixels s

Input state s is stack of raw pixels from last 4 frames

ML — Reinforcement Learning

Output is Q(s, a) for 18 joystick/button positions
Reward is change in score for that step



®
P \gv_

VB RL: DQN results in Atari

DQN paper

www.nature.com/articles/naturel14236

DQN source code:

sites.google.com/a/deepmind.com/dqn/ i ‘ e

athalishaman-wal
pectormance nvMe games

SHAREDATA IN AGIANTINTHE | TELEPORTATION soammr ——
OUTBREAKS EARLY UNIVERSE FORTWO
b 7o il B = =
ik Wi hon
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Gorila (General Reinforcment Learning Architecture )

Distributed Memory

SAMPLE
EXPERIENCES EXPERIENCE

PARAMETERS

PARAMETERS
GRADIENTS

0 0 O

ML — Reinforcement Learning

K%

Actors & Environments

27



Deep Policy Networks

¥ Represent policy by deep network with weights u

a = m(als,u) or a = 7(s,u)

¢ Obijective function as total discounted reward

Lu)y=E|n+vyn+ Ve + ... | (- u)]|

¢ Optimise
e objective end-to-end by SGD

i.e. Adjust policy parameters u to achieve more reward

ML — Reinforcement Learning
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Deep Policy Networks

ML — Reinforcement Learning

r The gradient of a stochastic policy

OL(u)

ou B

OL(u)

ou

Actor-Critic Algorithm

[ Olog 7(als, u)

ou

[0Q™(s,a) Da

da

Q" (s. a)

ou




Model-Based Deep RL

e Learning Models of the Environment

e Challenging to plan due to compounding errors
Errors in the transition model compound over the trajectory
Planning trajectories differ from executed trajectories

At end of long, unusual trajectory, rewards are totally wrong

ML — Reinforcement Learning
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DRL in Go

AlphaGo paper:

WwWww.nature.com/articles/naturel16961

AlphaGo resources:

Atlast — a computer program that
can beat a champion Go player MEriM

deepmind.com/alphago/ ALLSYSTEMS GO
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