
	

Machine Learning (part II)

Recurrent

Neural Networks

Angelo Ciaramella



M
L 
–

R
e
cu

rr
e
nt

N
N

s

2

RNNs

family of neural networks for processing sequential 

data

specialized for processing a sequence of values 

                        

                              x(1), . . . , x(τ)

early ideas found in machine learning and statistical 

models of the 1980s

sharing parameters across different parts of a model

Recurrent Neural Networks
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Related idea

use of convolution across a 1-D temporal sequence

time-delay neural networks

RNNs

minibatches of sequences

may also be applied in two dimensions across spatial 

data such as images

Recurrent Neural Networks
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Adaptive filter

The parameters are estimated 

learning algorithm

An error function is used

e.g., Linear Artificial Neural Network (Adaline) 

Adaptive filters
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Hospital
ECG (electrocardiogram) corrupted by noise at 50 Hz 
(electricity)

The current can vary between 47 Hz and 53 Hz

A filter for the elimination of static noise at 50 Hz could 
give errors

An adaptive filter can learn from the current shape of noise 

Helicopter
Pilot speaking with noise from rotating propeller

The noise has not a spectrum well defined

An adaptive filter learns the shape of the noise

The noise can be subtracted from the signal for only the 
pilot's voice

Adaptive filters 
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Adaptive filters 
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Related idea

formalize the structure of a set of computations

introduce the idea of an operation

an operation is a simple function of one or more variables

Computational graphs
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Computational graphs

Graph using the × operation to compute z = xy
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Computational graphs

logistic regression prediction

intermediate expressions
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Computational graphs

Minibatch of inputs X



M
L 
–
 R

e
cu

rr
e
nt

 N
N

s

12

Computational graphs

More than one operation of a linear regression model
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Artificial Neural Networks

exhibit temporal dynamic behavior

can use their internal state (memory) to process 

sequences of inputs

models sequences

Time series

Natural Language

Speech

Convert non-sequences to sequences, eg: feed an image as 

a sequence of pixels!

RNNs



M
L 
–
 R

e
cu

rr
e
nt

 N
N

s

14

Feed-forward NN
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Temporal dipendencies



M
L 
–
 R

e
cu

rr
e
nt

 N
N

s

16

Reber Grammar

Problem that can not be solved without memory
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Jordan’s sequential network

M.I. Jordan NN (1986).
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Jordan’s sequential network

Jordan NN has been applied to categorize a class of English syllables. 



M
L 
–
 R

e
cu

rr
e
nt

 N
N

s

19

Simple recurrent network

Elman RNN (1990). 
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Simple recurrent network

Elman RNN. Basic RNN structure called “Vanilla” RNN 
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Simple recurrent network

Elman SRN. A total of 60,000 randomly generated strings are used 

for training.  
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Applications of RNNs

Image Captioning 

.. and Trump

Write like Shakespeare

RNN Generated 
Music
RNN Generated 
Eminem rapper

… and more!

Twitterbot

I'm a Neural Network trained on Trump's 

transcripts. Priming text in [ ]s. Donate 

(http://www.gofundme.com/deepdrumpf ) to 

interact! Created by @hayesbh.

https://t.co/o4pye5WflK
https://twitter.com/hayesbh
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Dynamical system (reccurrent expression)

Example 

Recurrent Neural Networks

State of the system

Unfolded computational graph
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Dynamical system driven by an external signal

RNNs

 

Recurrent Neural Networks

state of the hidden units of the network
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Recurrent Neural Networks

This recurrent network just processes information from the input x by 

incorporating it into the state h that is passed forward through time

A RNN with no outputs 
Circuit diagram

delay of 1 time step
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Representation of the unfolded recurrence

 

Recurrent Neural Networks
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Recurrent Neural Networks

Recurrent networks that produce an output at each time step and have 

recurrent connections between hidden units

universal – 

any function computable 

by a Turing machine can be 

computed by such a 

recurrent network of a finite 
size

Correct output 
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Recurrent Neural Networks

Recurrent networks that produce an output at each time step and have

recurrent connections only from the output at one time step to the 

hidden units at the next time step
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Recurrent Neural Networks

Recurrent networks with recurrent connections between hidden units, 

that read an entire sequence and then produce a single output
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Vanilla RNN cell

next time 
step

xt: Input at time t
ht-1: State at time t-1
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Unfolding

Weights shared over 
time!
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Deep RNN

High level feature!

Recurrent depth = 3

Feedforward depth = 4 



M
L 
–
 R

e
cu

rr
e
nt

 N
N

s

33

Backpropagation Trough Time (BPTT)

Objective is to update the weight 

matrix:

Issue: W occurs each timestep

Every path from W to L is one 

dependency

Find all paths from W to L!

(note: dropping subscript h from Wh for brevity)
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Backpropagation Trough Time (BPTT)

How many paths exist from W to 
L through L1? 

Just 1. Originating at h0.
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Backpropagation Trough Time (BPTT)

How many paths from W to 
L through L2?

2. Originating at h0 and h1.
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Backpropagation Trough Time (BPTT)

And 3 in this case.

The gradient has two 
summations:
1: Over Lj

2: Over hk

Origin of path = basis for Σ
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Backpropagation Trough Time (BPTT)

First summation over L
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Backpropagation Trough Time (BPTT)

● Second summation over h: 
Each Lj depends on the weight 
matrices before it

Lj depends on all hk 

before it.
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Backpropagation Trough Time (BPTT)

No explicit of Lj on hk

Use chain rule to fill missing steps

j

k
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Backpropagation Trough Time (BPTT)

No explicit of Lj on hk

Use chain rule to fill missing steps

j

k
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Backpropagation Trough Time (BPTT)

No explicit of Lj on hk

Use chain rule to fill missing steps

j

k
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Backpropagation Trough Time (BPTT)

The final Backpropagation equation
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Backpropagation Trough Time (BPTT)

j

k

● Often, to reduce memory requirement, 

we truncate the network

● Inner summation runs from  j-p to j for 

some p ==> truncated BPTT
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Backpropagation Trough Time (BPTT)

Expanding the Jacobian
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Backpropagation Trough Time (BPTT)

Weight Matrix Derivative of activation function

Repeated matrix multiplications leads to vanishing and exploding 

gradients.
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Vanishing gradients

Considerations

- Smaller weight parameters lead to faster gradients vanishing

- Very big initial parameters make the gradient descent to diverge fast (explode) 
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Exploiding gradients
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Eigenvalues and Stability 

Consider identity activation function

If Recurrent Matrix Wh is a diagonalizable: 

Computing powers of Wh is 

simple:

Λ is a diagonal matrix with 

eigenvalues placed on the 

diagonals

Q matrix composed of 

eigenvectors of Wh
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Eigenvalues and Stability 

Vanishing 

gradients

Exploding 

gradients
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DNNs train difficulties

Vanishing gradient

Exploiding gradient 

Solutions

Previously proposed 

Unsupervised pre-training

Improve network architecture 

Fundamental DL problem
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Assume the hyperbolic tangent activation function

Initial state h(0)

Update equation

 

RNNs – forward propagation
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Total loss

 

RNNs – forward propagation

Negative log-likelihood
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RNNs – Teacher forcing

Illustration of teacher forcing



M
L 
–
 R

e
cu

rr
e
nt

 N
N

s

54

back-propagation through time (BPTT) algorithm

For each node N we need to compute the gradient 
recursively

based on the gradient computed at nodes that follow it in 
the graph

Start the recursion 

  

 

RNNs – learning 
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Gradient on the outputs at time step t, for all i, t,

 

RNNs – learning 
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Backwards starting from the end of the sequence

Back-propagate gradients through time

 

RNNs – learning 

Once the gradients on the internal nodes of the computational graph are

obtained, we can obtain the gradients on the parameter nodes
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For all the parameters 

 

RNNs – learning 
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RNNs – Bidirectional

prediction of y(t) which

may depend on the whole 

input sequence e.g., speech 

recognition
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RNNs – Encoder and Decoder

encoder-decoder or 

sequence-to-sequence 

RNN architecture

To map input sequence to an 

output sequence which is not 

necessarily the same lenght: 

NLP, speech recongition, … 

Context

vector or 

sequence

Attention meccanism to C could be added 
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Deep Recurrent Networks 

The hidden recurrent state can be broken down into 

groups organized hierarchically
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Deep Recurrent Networks 

Deeper computation (e.g., an MLP) can be 

introduced in the input-to-hidden, 

hidden-to-hidden and hidden-to-output parts. 

This may lengthen the shortest path linking 

different time steps.
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Deep Recurrent Networks 

The path-lengthening effect can be mitigated by

introducing skip connections
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Recursive NNs

Generalization of recurrent networks

Applied for structurated data
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Long-Term dependendencies

Vanishing/Exploding Gradients in RNN

Weight 
Initialization 

Methods

Constant Error 
Carousel

● Identity-RNN
● np-RNN

● LSTM
● GRU

Echo State 
Networks
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Long-Term dependendencies

Random Wh initialization of RNN has no constraint 

on eigenvalues

vanishing or exploding gradients in the initial epoch

Careful initialization of Wh with suitable 

eigenvalues

allows the RNN to learn in the initial epochs 

hence can generalize well for further iterations
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Long-Term dependendencies

Trick #1(IRNN)

Wh initialized to Identity

Activation function: ReLU

Trick# 2 (np-RNN)

Wh  positive definite (+ve real eigenvalues)  

At least one eigenvalue is 1, others all less than equal to 

one

Activation function: ReLU
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Long Short-Term Memory 
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Gated RNNs

Long Short-Term memory

Gated Recurrent Unit

Idea

creating paths through time that have derivatives that 

neither vanish nor explode

Gated RNNs
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Gated RNNs

linear self-connections and a weight near 

one on these connectionsLeaky Units
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LSTM cell

The core idea is this cell 

state Ct, it is changed 

slowly, with only minor 

linear interactions. It is very 

easy for information to flow 
along it unchanged.

ht-1

Ct-1

This sigmoid gate 

determines how much

information goes thru

This decides what info

Is to add to the cell state

Output gate 

Controls what 

goes into output

Forget  input

gate      gate

Why sigmoid or tanh:

Sigmoid: 0,1 gating as switch.

Vanishing gradient problem in

LSTM is handled already.
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LSTM cell

it decides what component 

is to be updated.

C’t provides change 

contents
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LSTM cell

Updating the cell state

Decide what part of 

the cell state to output
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Allows “peeping into the memory”. Can learn the fine distinction between 

sequences of spikes separated by either 50 or 49 discrete time steps
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It combines the forget and input into a single update gate.

It also merges the cell state and hidden state. This is simpler

than LSTM. There are many other variants too.

reset gate Update gate
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Clipping gradients

“landscape” in which one finds “cliffs”

parameter gradient is very large

Clipping the gradient



M
L 
–
 R

e
cu

rr
e
nt

 N
N

s

77

RNN vs LSTM

Saliency Heatmap

Recent words more 
salient
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RNN vs LSTM

Saliency Heatmap

LSTM captures long term 
dependencies
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Speech recognition RNN
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The equivalent idea for RNNs 

fix the input- hidden connections and the hidden-hidden 
connections at random values 

only learn the hidden-output connections

The learning is then very simple (assuming linear 
output units)

Its important to set the random connections very 

carefully so the RNN does not explode or die

See also Liquid State Machine

Reservoir computing 
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Reservoir computing 
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