;| DiPARTIMENTD DI SCiENZE
54| E TECNOLOGIE

Machine Learning (part Il)

Recurrent
Neural Networks

Angelo Ciaramella

Recurrent Neural Networks

¥ RNNs

e family of neural networks for processing sequential
data

e specialized for processing a sequence of values

xM oL, x(®

e early ideas found in machine learning and statistical
models of the 1980s

sharing parameters across different parts of a model

ML — Recurrent NNs

f <]
K%

ML — Recurrent NNs

A o

Recurrent Neural Networks

¢ Related idea

E use of convolution across a 1-D temporal sequence

time-delay neural networks

r RNNs

e minibatches of sequences

k may also be applied in two dimensions across spatial
data such as images

Adaptive filters

e Adaptive filter

¥ The parameters are estimated

learning algorithm

B An error function is used

E e.g., Linear Artificial Neural Network (Adaline)

ML — Recurrent NNs

K7 g
SR

% g

Adaptive filters

ML — Recurrent NNs

e Hospital
B ECG (electrocardiogram) corrupted by noise at 50 Hz

(electricity)

e The current can vary between 47 Hz and 53 Hz
E A filter for the elimination of static noise at 50 Hz could

give errors

An adaptive filter can learn from the current shape of noise

e Helicopter

Pilot speaking with noise from rotating propeller
The noise has not a spectrum well defined
An adaptive filter learns the shape of the noise

The noise can be subtracted from the signal for only the
pilot's voice

Adaline

ML — Recurrent NNs

VRt o

Hidden
layer

+ FFNN with delayed inputs

o

~

* No internal state
/

Output
layer

K7 g

Adaptive filters

ML — Recurrent NNs

input

x(n)

Y

N

e(n)=d(n)—d(n)
Variable filter | d(n) |
———(+ J—F d(n)
“r" — 4
t target signal
Aw, e(n)
Update I -
algorithm | W, = [Wn : M - Wnp

x(n)=d(n) +y(n)

n

oise

FIR structure

d(n)=w, -x(n‘)J

W, ., =W +AwW,

x(n) = [x(n), x(n=1),..., x(n— p)]

Learning algorithm (e.g., LMS and descent

gradient)

source signal

Computational graphs

ML — Recurrent NNs

‘w.

Related idea

e formalize the structure of a set of computations
E introduce the idea of an operation

an operation is a simple function of one or more variables

Computational graphs

Graph using the x operation to compute z = xy

ML — Recurrent NNs

K
SR

Computational graphs

ML — Recurrent NNs

K7 g
e

intermediate expressions

logistic regression prediction 3 = & (:{:T w + .’})

10

Computational graphs

ML — Recurrent NNs

K7 g
SR

Minibatch of inputs X

H = max{0, XW + b}

11

ML — Recurrent NNs

K7 g
SR

Computational graphs

More than one operation of a linear regression model

12

RNNs

e Artificial Neural Networks

e exhibit temporal dynamic behavior

E can use their internal state (memory) to process
sequences of inputs

e models sequences

ML — Recurrent NNs

f <]
K%

Time series
Natural Language

Speech

Convert non-sequences to sequences, eg: feed an image as
a sequence of pixels!

13

R
PR

Feed-forward NN

ML — Recurrent NNs

Input
Features layer

- Petals

Hidden Output
layer(s) layer

X

Input

Simplified representation:

Input layer Hidden layer(s) Owutput layer

()—7

Decision output

S

Iris

—Iris

Decisions

14

Temporal dipendencies

Frame 0 Frame 1 Frame 2 Frame 3 Frame 4
Stem: seen Stem: seen Stem: seen Stem: partial Stem: hidden
Petals: hidden Petals: hidden Petals: partial Petals: partial Petals: seen

|

Plilns). 0.1 P(Ins): 0.11 P(lns). 02 Pllns): 045 P(lIris): 0.9
P(~lris): 0.9 P(~lris): 0.89 P(~lris): 0.8 P(~lris): 0.55 P(~lris): 0.1
- _ . _ _ |3 =’

2 T ——— T = -‘;ﬂ'ﬁ"'—-’-—:‘;—?-'ﬁa;

Z

[

= . .

0 Decision on ﬁ

= sequence of ./

b observations

o

I

—

=

e

15

Reber Grammar

ML — Recurrent NNs

R
P

Problem that can not be solved without memory

g 05 States (nodes)

Begin

Transitions

|

N (edges)
Transitions have equal probabilities:
P(1—2)=P(1—3)=0.5

16

Jordan's sequential network

Limited short-term
memory

L "

Input layer Hidden layer Output laver

@__} y(1)

Context layer 1 step delay

B Output-to hidden
connections

x(1)

ML — Recurrent NNs

M.l. Jordan NN (1986).

K7 g
SR

17

Jordan's sequential network

ML — Recurrent NNs

f <]
K%

Jordan NN has been applied to categorize a class of English syllables.

18

Simple recurrent network

ML — Recurrent NNs

X »

Hidden-to hidden connections
marke system Turing-complete

" 4
hidden layer .
i"e.:uerrmt
feedback
triput layver cotitest laver
Input layer Hidden layer Output laver

x(f) C y(t)

Context layer step del

Elman RNN (1990). 19

Simple recurrent network

R
P

ML — Recurrent NNs

Hidden laver

Real __
inputs
Qutput layer
- ¥(1)
Context /
inputs

—>{ h(t-m)

Elman RNN. Basic RNN structure called “Vanilla” RNN 20

Simple recurrent network

HEBNMEE

HIDDEN UNITS

oo ELLELLET

ML — Recurrent NNs

Elman SRN. A total of 60,000 randomly generated strings are used
for training.

K g
P

21

Applications of RNNs

VIOLA:
Why, Salisbury must find his flesh and thought
That which | am not aps, not a man and in fire,
To show the reining of the raven and the wars
A person riding a To grace my hand reproach within, and not a fair are hand,
motorcycle on a dirt road. That Caesar and my goodly father's world;

Write like Shakespeare

4 In reply to Thomas Paine

. ® DeepDrumpf @DeepDrumpf - Mar 20

ﬁ There will be no amnesty. It is going to pass because the people are
going to be gone. I'm giving a mandate. #ComeyHearing

@Thomas1774Paine

transcripts. Priming text in []s. Donate

() to

interact! Created by :
... and more! 22

é Image Captioning

:,E, ..and Trump

= RNN Generated .

o Music Twitterbot

nlz RNN Generated I'm a Neural Network trained on Trump's
=

Eminem rapper

R
;R

https://t.co/o4pye5WflK
https://twitter.com/hayesbh

Recurrent Neural Networks

ML — Recurrent NNs

K7 g
SR

¢ Dynamical system (reccurrent expression)

g(t) — f(S{t—l}; 0)

State of the system

¢ Example
s =f(s%);0)

—f(f(s;0);0)

o ™ ~ T ™
! » / \
e OO Ora
_ ' f f f NG

Unfolded computational graph

23

Recurrent Neural Networks

¢ Dynamical system driven by an external signal

gt f(s(t_l)}m{t};ﬂ)

¢ RNNs
RO = (Rt £®).9)

state of the hidden units of the network

ML — Recurrent NNs

K7 g
SR

24

©»

Recurrent Neural Networks

o A RNN with no outputs
Circuit diagram

delay of 1 time step

OLIN

f

This recurrent network just processes information from the input x by
incorporating it into the state h that is passed forward through time

lhf}"- b—th‘f“

U nfold

ML — Recurrent NNs

25

Recurrent Neural Networks

r Representation of the unfolded recurrence

R =g (2®) g1 2(t=2) 22 5 ()
=f(h=Y 2(®); 9)

ML — Recurrent NNs

K7 g
SR

26

Recurrent Neural Networks

universal —

any function computable

by a Turing machine can be
computed by such a

recurrent network of a finite
size

ML — Recurrent NNs

Recurrent networks that produce an output at each time step and have
recurrent connections between hidden units

K7 g
SR

27

Recurrent Neural Networks

ML — Recurrent NNs

K g
P

Recurrent networks that produce an output at each time step and have

recurrent connections only from the output at one time step to the
hidden units at the next time step

28

Recurrent Neural Networks

ML — Recurrent NNs

©»
P

Recurrent networks with recurrent connections between hidden units,
that read an entire sequence and then produce a single output

29

Vanilla RNN cell

X -
X.: Input at time t \\"’f%ﬁ h,
Nes: at time t-1 o d
w1+ otate hey

next time
step

hy = f(Wphi—1 + Wyxy)

ML — Recurrent NNs

K7 g
SR

30

Unfolding

hy = f(Whhi—1 + Weay)

7%Tu,;¢

O e =

g e ==

1

1

| -

)]

>

o

©

()]

| R S

o (D

e

5 E

wn =

)

e

.80

=

& ..T|.l|.|1..n

— & ——)
M = = zIT[[-

SNN #us1undsy — W

31

WL
¢ﬂ/ :

o

ML — Recurrent NNs

R

High level feature!

Feedforward depth =4

Recurrent depth =3

32

Backpropagation Trough Time (BPTT)

ML — Recurrent NNs

K7 g
SR

Obijective is to update the weight
matrix:

oL
W s W — a2
~ Y ow

Issue: W occurs each timestep
Every path from W to L is one
dependency

Find all paths from W to L!

(note: dropping subscript h from W,, for brevity)

33

Backpropagation Trough Time (BPTT)

ML — Recurrent NNs

K7
%(,*

How many paths exist from W to
L through L,?

Just 1. Originating at h.

34

Backpropagation Trough Time (BPTT)

ML — Recurrent NNs

K7 g

How many paths from W to
L through L,?

2. Originating at hy and h;.

35

Backpropagation Trough Time (BPTT)

ML — Recurrent NNs

K7

And 3 in this case.

Origin of path = basis for

oL
OW

The gradient has two
summations:

1: Over L

2. Over h,

36

ML — Recurrent NNs

R
PR

Backpropagation Trough Time (BPTT)

First summation over L

OL _ 5~ 0L,
OW = OW

37

Backpropagation Trough Time (BPTT)

ML — Recurrent NNs

R
%,*

Yo

¥z

()

¥ra

e Second summation over h:
Each L; depends on the weight
matrices before it

OL; _ Xj: OL;|Ohy,
OW — £=|0hi|oW

/

L; depends on all hy
before it.

38

Backpropagation Trough Time (BPTT)

ML — Recurrent NNs

K7
%,*

OL; _ i L, |0hy
Ohy.|OW

No explicit of Lj on hy
Use chain rule to fill missing steps

8Lj _ Zj: 3L3 Syj 8}13

Ohy,

8yj ahj. c‘?hk @W

39

Backpropagation Trough Time (BPTT)

ML — Recurrent NNs

K7
%,*

oL; i OL;|0hy
- ~|0hy|OW

No explicit of L on hy
Use chain rule to fill missing steps

OL; i OL; dy; Oh;

Ohy,

dy; Oh; Ohy, OW

40

Backpropagation Trough Time (BPTT)

ML — Recurrent NNs

K7
%,*

OL; _ i OL;|0hy
oW~ 2=|0h; [oW

No explicit of Lj on hy

Use chain rule to fill missing steps

8Lj _ Zj: aLj 8yj ﬁhj,

Ohy,

8yj 8}15, ah,&; oW

41

Backpropagation Trough Time (BPTT)

Ohy

= 23 (T)

7=0 k=1

The final Backpropagation equation

ML — Recurrent NNs

K
SR

OWh

42

Backpropagation Trough Time (BPTT)

ﬁhh

=

OL:\oy; | Y Ohum
Z Z ay; ﬁhj (H Oh..»,.”_l) OWH,

we truncate the network

Often, to reduce memory requirement,

é Inner summation runs from j-p toj for
= some p ==> truncated BPTT

()

=

O

)

(2’4

I

—

=

43

Backpropagation Trough Time (BPTT)

OL = ~0L; 0y | ‘& Ohm \|Ohs
ow =22 o on |\ U an 5)low
=0 k=1 m=k+1

h"m — f(whh‘nl—l + Wmmm)

8h’m
3hm— 1

— ngiag (ff(Whhm—l + mem))

ML — Recurrent NNs

Expanding the Jacobian

4®
PR

44

Backpropagation Trough Time (BPTT)

ML — Recurrent NNs

‘w.

) ii&lg (ff(wh. hﬁ'm,—l + W::.‘ g:m,))

Weight Matrix

Repeated matrix multiplications leads to vanishing and exploding

gradients.

N\

Derivative of activation function

45

Vanishing gradients

14
- sigmold O — sigmoid derivate
- tanh » — tanh derivate
0.5 08
_ X s .
= 00 T Gradient
= 04
e Saturation ’ 7056 L
2 0z}
-1.0 Qo
-1Q - 0 5 10 -10 - (& 5 10
oh, dh, dhy Oh, dh,
oh, oh,., 0dh, 0h, dh,
Known problem for deep feed-forward networks.
For recurrent networks (even shallow) makes impossible to learn long-term dependencies!
oy

Considerations
- Smaller weight parameters lead to faster gradients vanishing

- Very big initial parameters make the gradient descent to diverge fast (explode)
46

ML — Recurrent NNs

4®
e

Exploiding gradients

K%

ML — Recurrent NNs

0.35
0.30

0.15
0.10
0.05

-2.0
~26 -24,°%2
-2.8 =28 je ofb

Pascanou R. ¢t al, On the difficulty of training
recurrent neural networks. arXiv (2012)

Large increase in the norm of the gradient
during training

Diagnostics: NaNs: Cost function large fluctuations

0.25 '
5

ot D
w

0.7

— Train

0.6} Validation

0.5
0.4
0.3
0.2

0.15 5 10 / 15 20

Network can not converge and
weigh parameters do not stabilize

-

\

v

Solutions:
» Use gradient clipping
* Try reduce learning rate

* Change loss function by setting constrains on weights (L1/L2 norms)

47

Eigenvalues and Stability

ML — Recurrent NNs

R
P

Consider identity activation function

If Recurrent Matrix W, is a diagonalizable:
Q matrix composed of

eigenvectors of W,

Wh=Q '«AxQ
A is a diagonal matrix with

eigenvalues placed on the
diagonals

Computing powers of Wy, is
simple:

Wi =Q '+ A" % Q

48

Eigenvalues and Stability

ML — Recurrent NNs

R
SR

Vanishing
gradients
—0.6180 0 ALO _ 0.0081 0
0 1.6180 0 122.9919
Exploding
gradients

W}?:Q_l*A”*Q

49

ML — Recurrent NNs

©»

Fundamental DL problem

¢ DNNs train difficulties

E Vanishing gradient
e Exploiding gradient

e Solutions
e Previously proposed
e Unsupervised pre-training

e Improve network architecture

50

RNNs - forward propagation

¢ Assume the hyperbolic tangent activation function

¢ Initial state h(©

» Update equation

a(t} _ ba Wh{t—l} n U:I?{ﬂ
ya

é N0 — tﬂllh(ﬂ-(ﬂ)

&I) .y’“(f} — H{}ftl'ﬂf:l?{(ﬂ{t))

=

K7 g
SR

51

RNNs - forward propagation

¥ Jotal loss

L({=®,.. 2™}y, ..y}

=Y L0

t

— — Zlﬂg}}mﬂdel (fy(t} | {m(l}} e ::cm})
t

Negative log-likelihood

ML — Recurrent NNs

4®
e

52

RNNs - Teacher forcing

(7]
z
z
=
(O}
-
D
O
o
| Train time Test time
—
=
T lllustration of teacher forcing

53

RNNs - learning

ML — Recurrent NNs

‘w.

» back-propagation through time (BPTT) algorithm

» For each node N we need to compute the gradient
recursively

e based on the gradient computed at nodes that follow it in

the graph
VL
B Start the recursion
oL
=]
OL®)

54

ML — Recurrent NNs

K%
SR

RNNs - learning

¢ Gradient on the outputs at time step t, for all i, t,

oL 0L oL®
ﬂnfj oL (‘?mgﬂ

(Vg L)i —

log softmax(z); = z — lclgz exp(z;)
J

—

log > j €XP (2j) = max; z; = z;

55

RNNs - learning

r Backwards starting from the end of the sequence

Vh[T} L=v" Vafr}L-

r Back-propagate gradients through time

SR+ | 900 \ '
¢ do
V’th = (S) (Vhit-l-l]L) + ([‘)h(ﬂ> (vn[tlL)

2
—Ww' (Vh.;m)L) diag (l — (h(H—l))) +vT (V ot) L)

ML — Recurrent NNs

Once the gradients on the internal nodes of the computational graph are
obtained, we can obtain the gradients on the parameter nodes

K7 g
SR

56

RNNs - learning

ML — Recurrent NNs

K7 g
Pe. S

e For all the parameters

VL

VL

VvL

Vol

901" Tv I V oL
Z de o) ._Zt o(t)

t
o\
Z (%) Vel = Zdiag (l — (h(t))E) VoL
t t
Z Z (JL) Vvﬂm Z (VL) B®7

)f* :

57

ML — Recurrent NNs

‘w.

RNNs - Bidirectional

prediction of y(t) which

may depend on the whole
iInput sequence e.g., speech
recognition

58

VRt o

ML — Recurrent NNs

RNNs - Encoder and Decoder

Enmder

vector or

sequence| o

encoder-decoder or

seguence-to-sequence
RNN architecture

To map input sequence to an
output sequence which is not
necessarily the same lenght:
NLP, speech recongition, ...

Attention meccanism to C could be added 59

Deep Recurrent Networks

ML — Recurrent NNs

‘w.

G
ol
(2

The hidden recurrent state can be broken down into
groups organized hierarchically

60

ML — Recurrent NNs

‘w.

Deep Recurrent Networks

Deeper computation (e.g., an MLP) can be
introduced in the input-to-hidden,
hidden-to-hidden and hidden-to-output parts.
This may lengthen the shortest path linking
different time steps.

@*d?{}@

61

Deep Recurrent Networks

. The path-lengthening effect can be mitigated by

introducing skip connections

ML — Recurrent NNs

% g

62

Recursive NINs

ML — Recurrent NNs

Generalization of recurrent networks
Applied for structurated data

63

R o

Long-Term dependendencies

ML — Recurrent NNs

Vanishing/Exploding Gradients in RNN

4/’

Weight
Initialization
Methods

;

e |dentity-RNN
e np-RNN

N N\

Constant Error Echo State
Carousel Networks

e |LSTM

e GRU

64

Long-Term dependendencies

r Random W, initialization of RNN has no constraint
on eigenvalues

E vanishing or exploding gradients in the initial epoch

¥ Careful initialization of W, with suitable
eigenvalues

e allows the RNN to learn in the initial epochs

k hence can generalize well for further iterations

ML — Recurrent NNs

o
g7

65

f <]
K%

ML — Recurrent NNs

Long-Term dependendencies

e Trick #1(IRNN)
¥ W, initialized to Identity

e Activation function: RelLU

e Trick# 2 (np-RNN)
e Wh positive definite (+ve real eigenvalues)

k At least one eigenvalue is 1, others all less than equal to
one

e Activation function: RelLU

66

Long Short-Term Memory

—~®

hI

>
+

Eell
b
v v

ML — Recurrent NNs

R
PR

67

Gated RNNs

¥ Gated RNNs

e Long Short-Term memory

B Gated Recurrent Unit

¢ ldea

e creating paths through time that have derivatives that
neither vanish nor explode

ML — Recurrent NNs

% g

68

ML — Recurrent NNs

K7 g
SR

Gated RNNs

linear self-connections and a weight near

Leaky Units one on these connections

p(t) aﬂgt_l_) +(1 —a) o?)

output

mput input gate utput gate

69

LSTM cell

ThiiAERIeGAIMatanfo
sclefetIEBNEné Instelte
@.nfgmnm@@m@uhru (h) 6
A
fe. /| \ t
e w R 4 ™
A llllcﬁ%hll A
. H:q ad A
© ® ©
2
Z Forget input
§ gate gate
5 _The core idea is this cell 5
é AR A Gs % raRGed @ >

. |

SGHAAdh %ﬂﬁv‘%ﬁ?oﬁw'mh e P g o

2 VRShing SFRdiERLPIORISE T e
L31Y) ihpidiashabRagow

%.# along it unchanged.

L o

LSTM cell

ML — Recurrent NNs

A
4)
—— ®
EaniD>
©y
[o][g][tanh] [0]
t =0 Wy lhio1, 2] + by) [1 1 J
/

I, decides what component

IS to be updated.
i = o (Wi lheoy.ze] + by) C’; provides change

iy > N contents
Ct :tanh(WC'[ht_l,ZEt] + bC)

A o

LSTM cell

ML — Recurrent NNs

)
®

=5
—>

he A\
anh>
Ot o
hi—1 ﬂ .hf

Cy = fi+xCiq +’it*ét

ot =0 (Wy [hi—1,2¢] + bo)
hy = o¢ * tanh (Cy)

Updating the cell state

Decide what part of
the cell state to output

RNN vs LSTM

(a) RNN

ML — Recurrent NNs

K

i |
(X) ©
>
©)
[anh] [0
>
+| -

D,
T

%)

(b) LSTM

Peephole LSTM

ft =0 (W [Ceo1,hi—1,2¢] + by)
it =0 (Wi |Ce—1,hi—1, 2] + ;)
L \J O = U(Wo'[ot;ht—laxt] + bo)

Allows “peeping into the memory”. Can learn the fine distinction between
sequences of spikes separated by either 50 or 49 discrete time steps

ML — Recurrent NNs

f <]
K%

o
&9

Gated Recurrent Unit (GRU)

ML — Recurrent NNs

reset gate Update gate

[|

it =0 (Wz ' [ht—lafﬁt])
r'e =0 (W’r’ ' [ht—lal’t])
iLt — tanh (W . [’I"t X ht—la .ZEt])

ht:(l—zt)*ht_l—i—zt*fzt

It combines the forget and input into a single update gate.
It also merges the cell state and hidden state. This is simpler
than LSTM. There are many other variants too.

ML — Recurrent NNs

K7
%,*

Clipping gradients

Without clipping

parameter gradient is very large

“landscape” in which one finds “cliffs”

With clipping

Tuw,b)

Clipping the gradient

76

RNN vs LSTM

ML — Recurrent NNs

4
P

Saliency Heatmap

= I

: , s
hate l ”"'”H' | ‘ hatel
s IR

movie | l movie

Recurrent

(0| N

LSTM

Recent words more

salient

77

RNN vs LSTM

ML — Recurrent NNs

K%

hate

movie

though

plot

interesting

u

Saliency Heatmap

though !
the

1

. |
009 :
hate i} 11l
008 o
the
ooy |
movie

009

0.08
int
0.0

0 W 20 ¥ &®© %
Recurrent

LSTM captures long term

dependencies

000

Sequence to sequence chat model

W | am fine <EQOL>

|

How are you <EQL>

LSTM Encoder LSTM Decoder

w
Z
Z
[
C
(0]
S
-
-}
(O
(0]
(a%4
|
=

Andrew Ng

Speech recognition example (Deep Speech)

SNN #uazinday — W QM

Speech recognition RNN

ML — Recurrent NNs

o
g7

Reservoir computing

¢ The equivalent idea for RNNs

e fix the input- hidden connections and the hidden-hidden
connections at random values

e only learn the hidden-output connections

¢ The learning is then very simple (assuming linear
output units)

v Its important to set the random connections very
carefully so the RNN does not explode or die

¥ See also Liquid State Machine

81

ML — Recurrent NNs
SO
‘ v ;
@)

R
P

Reservo' r COmPUT| ng Herbert Jaeger, 2001

Echo State
Network Readout

K mput N mternal units L output
units units

O/ ; “Q; RS

@ ARG S—e ceas tr g, .,
.....

.
*a

‘w.

Reservoir computing

ML — Recurrent NNs

144

116
0

100

input signal

200

dynamical
reservoir

100 200

output (or
teacher)
signal

	Slide 1
	Slide 2: Recurrent Neural Networks
	Slide 3: Recurrent Neural Networks
	Slide 4: Adaptive filters
	Slide 5: Adaptive filters
	Slide 6: Adaline
	Slide 7: Adaptive filters
	Slide 8: Computational graphs
	Slide 9: Computational graphs
	Slide 10: Computational graphs
	Slide 11: Computational graphs
	Slide 12: Computational graphs
	Slide 13: RNNs
	Slide 14: Feed-forward NN
	Slide 15: Temporal dipendencies
	Slide 16: Reber Grammar
	Slide 17: Jordan’s sequential network
	Slide 18: Jordan’s sequential network
	Slide 19: Simple recurrent network
	Slide 20: Simple recurrent network
	Slide 21: Simple recurrent network
	Slide 22: Applications of RNNs
	Slide 23: Recurrent Neural Networks
	Slide 24: Recurrent Neural Networks
	Slide 25: Recurrent Neural Networks
	Slide 26: Recurrent Neural Networks
	Slide 27: Recurrent Neural Networks
	Slide 28: Recurrent Neural Networks
	Slide 29: Recurrent Neural Networks
	Slide 30: Vanilla RNN cell
	Slide 31: Unfolding
	Slide 32: Deep RNN
	Slide 33: Backpropagation Trough Time (BPTT)
	Slide 34: Backpropagation Trough Time (BPTT)
	Slide 35: Backpropagation Trough Time (BPTT)
	Slide 36: Backpropagation Trough Time (BPTT)
	Slide 37: Backpropagation Trough Time (BPTT)
	Slide 38: Backpropagation Trough Time (BPTT)
	Slide 39: Backpropagation Trough Time (BPTT)
	Slide 40: Backpropagation Trough Time (BPTT)
	Slide 41: Backpropagation Trough Time (BPTT)
	Slide 42: Backpropagation Trough Time (BPTT)
	Slide 43: Backpropagation Trough Time (BPTT)
	Slide 44: Backpropagation Trough Time (BPTT)
	Slide 45: Backpropagation Trough Time (BPTT)
	Slide 46: Vanishing gradients
	Slide 47: Exploiding gradients
	Slide 48: Eigenvalues and Stability
	Slide 49: Eigenvalues and Stability
	Slide 50: Fundamental DL problem
	Slide 51: RNNs – forward propagation
	Slide 52: RNNs – forward propagation
	Slide 53: RNNs – Teacher forcing
	Slide 54: RNNs – learning
	Slide 55: RNNs – learning
	Slide 56: RNNs – learning
	Slide 57: RNNs – learning
	Slide 58: RNNs – Bidirectional
	Slide 59: RNNs – Encoder and Decoder
	Slide 60: Deep Recurrent Networks
	Slide 61: Deep Recurrent Networks
	Slide 62: Deep Recurrent Networks
	Slide 63: Recursive NNs
	Slide 64: Long-Term dependendencies
	Slide 65: Long-Term dependendencies
	Slide 66: Long-Term dependendencies
	Slide 67: Long Short-Term Memory
	Slide 68: Gated RNNs
	Slide 69: Gated RNNs
	Slide 70: LSTM cell
	Slide 71: LSTM cell
	Slide 72: LSTM cell
	Slide 73: RNN vs LSTM
	Slide 74: Peephole LSTM
	Slide 75: Gated Recurrent Unit (GRU)
	Slide 76: Clipping gradients
	Slide 77: RNN vs LSTM
	Slide 78: RNN vs LSTM
	Slide 79: Sequence to sequence chat model
	Slide 80: Speech recognition RNN
	Slide 81: Reservoir computing
	Slide 82: Reservoir computing
	Slide 83: Reservoir computing

