
	

Machine Learning (part II)

Recurrent

Neural Networks

Angelo Ciaramella

M
L
–

R
e
cu

rr
e
nt

N
N

s

2

RNNs

family of neural networks for processing sequential

data

specialized for processing a sequence of values

 x(1), . . . , x(τ)

early ideas found in machine learning and statistical

models of the 1980s

sharing parameters across different parts of a model

Recurrent Neural Networks

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

3

Related idea

use of convolution across a 1-D temporal sequence

time-delay neural networks

RNNs

minibatches of sequences

may also be applied in two dimensions across spatial

data such as images

Recurrent Neural Networks

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

Adaptive filter

The parameters are estimated

learning algorithm

An error function is used

e.g., Linear Artificial Neural Network (Adaline)

Adaptive filters

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

Hospital
ECG (electrocardiogram) corrupted by noise at 50 Hz
(electricity)

The current can vary between 47 Hz and 53 Hz

A filter for the elimination of static noise at 50 Hz could
give errors

An adaptive filter can learn from the current shape of noise

Helicopter
Pilot speaking with noise from rotating propeller

The noise has not a spectrum well defined

An adaptive filter learns the shape of the noise

The noise can be subtracted from the signal for only the
pilot's voice

Adaptive filters

M
L
–
 R

e
cu

rr
e
nt

 N
N

s
Adaline

M
L
–
 R

e
cu

rr
e
nt

 N
N

s
Adaptive filters

)()()(nvndnx +=

target signal

noise

input

FIR structure

)()(
~

nnd n xw =

 p

nnnn www ,...,, 10=w

)(),...,1(),()(pnxnxnxn −−=xnnn www +=+1

Learning algorithm (e.g., LMS and descent
gradient)

)(ˆ)()(ndndne −=

source signal

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

8

Related idea

formalize the structure of a set of computations

introduce the idea of an operation

an operation is a simple function of one or more variables

Computational graphs

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

9

Computational graphs

Graph using the × operation to compute z = xy

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

10

Computational graphs

logistic regression prediction

intermediate expressions

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

11

Computational graphs

Minibatch of inputs X

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

12

Computational graphs

More than one operation of a linear regression model

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

13

Artificial Neural Networks

exhibit temporal dynamic behavior

can use their internal state (memory) to process

sequences of inputs

models sequences

Time series

Natural Language

Speech

Convert non-sequences to sequences, eg: feed an image as

a sequence of pixels!

RNNs

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

14

Feed-forward NN

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

15

Temporal dipendencies

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

16

Reber Grammar

Problem that can not be solved without memory

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

17

Jordan’s sequential network

M.I. Jordan NN (1986).

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

18

Jordan’s sequential network

Jordan NN has been applied to categorize a class of English syllables.

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

19

Simple recurrent network

Elman RNN (1990).

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

20

Simple recurrent network

Elman RNN. Basic RNN structure called “Vanilla” RNN

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

21

Simple recurrent network

Elman SRN. A total of 60,000 randomly generated strings are used

for training.

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

22

Applications of RNNs

Image Captioning

.. and Trump

Write like Shakespeare

RNN Generated
Music
RNN Generated
Eminem rapper

… and more!

Twitterbot

I'm a Neural Network trained on Trump's

transcripts. Priming text in []s. Donate

(http://www.gofundme.com/deepdrumpf) to

interact! Created by @hayesbh.

https://t.co/o4pye5WflK
https://twitter.com/hayesbh

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

23

Dynamical system (reccurrent expression)

Example

Recurrent Neural Networks

State of the system

Unfolded computational graph

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

24

Dynamical system driven by an external signal

RNNs

Recurrent Neural Networks

state of the hidden units of the network

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

25

Recurrent Neural Networks

This recurrent network just processes information from the input x by

incorporating it into the state h that is passed forward through time

A RNN with no outputs
Circuit diagram

delay of 1 time step

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

26

Representation of the unfolded recurrence

Recurrent Neural Networks

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

27

Recurrent Neural Networks

Recurrent networks that produce an output at each time step and have

recurrent connections between hidden units

universal –

any function computable

by a Turing machine can be

computed by such a

recurrent network of a finite
size

Correct output

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

28

Recurrent Neural Networks

Recurrent networks that produce an output at each time step and have

recurrent connections only from the output at one time step to the

hidden units at the next time step

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

29

Recurrent Neural Networks

Recurrent networks with recurrent connections between hidden units,

that read an entire sequence and then produce a single output

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

30

Vanilla RNN cell

next time
step

xt: Input at time t
ht-1: State at time t-1

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

31

Unfolding

Weights shared over
time!

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

32

Deep RNN

High level feature!

Recurrent depth = 3

Feedforward depth = 4

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

33

Backpropagation Trough Time (BPTT)

Objective is to update the weight

matrix:

Issue: W occurs each timestep

Every path from W to L is one

dependency

Find all paths from W to L!

(note: dropping subscript h from Wh for brevity)

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

34

Backpropagation Trough Time (BPTT)

How many paths exist from W to
L through L1?

Just 1. Originating at h0.

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

35

Backpropagation Trough Time (BPTT)

How many paths from W to
L through L2?

2. Originating at h0 and h1.

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

36

Backpropagation Trough Time (BPTT)

And 3 in this case.

The gradient has two
summations:
1: Over Lj

2: Over hk

Origin of path = basis for Σ

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

37

Backpropagation Trough Time (BPTT)

First summation over L

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

38

Backpropagation Trough Time (BPTT)

● Second summation over h:
Each Lj depends on the weight
matrices before it

Lj depends on all hk

before it.

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

39

Backpropagation Trough Time (BPTT)

No explicit of Lj on hk

Use chain rule to fill missing steps

j

k

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

40

Backpropagation Trough Time (BPTT)

No explicit of Lj on hk

Use chain rule to fill missing steps

j

k

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

41

Backpropagation Trough Time (BPTT)

No explicit of Lj on hk

Use chain rule to fill missing steps

j

k

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

42

Backpropagation Trough Time (BPTT)

The final Backpropagation equation

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

43

Backpropagation Trough Time (BPTT)

j

k

● Often, to reduce memory requirement,

we truncate the network

● Inner summation runs from j-p to j for

some p ==> truncated BPTT

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

44

Backpropagation Trough Time (BPTT)

Expanding the Jacobian

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

45

Backpropagation Trough Time (BPTT)

Weight Matrix Derivative of activation function

Repeated matrix multiplications leads to vanishing and exploding

gradients.

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

46

Vanishing gradients

Considerations

- Smaller weight parameters lead to faster gradients vanishing

- Very big initial parameters make the gradient descent to diverge fast (explode)

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

47

Exploiding gradients

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

48

Eigenvalues and Stability

Consider identity activation function

If Recurrent Matrix Wh is a diagonalizable:

Computing powers of Wh is

simple:

Λ is a diagonal matrix with

eigenvalues placed on the

diagonals

Q matrix composed of

eigenvectors of Wh

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

49

Eigenvalues and Stability

Vanishing

gradients

Exploding

gradients

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

50

DNNs train difficulties

Vanishing gradient

Exploiding gradient

Solutions

Previously proposed

Unsupervised pre-training

Improve network architecture

Fundamental DL problem

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

51

Assume the hyperbolic tangent activation function

Initial state h(0)

Update equation

RNNs – forward propagation

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

52

Total loss

RNNs – forward propagation

Negative log-likelihood

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

53

RNNs – Teacher forcing

Illustration of teacher forcing

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

54

back-propagation through time (BPTT) algorithm

For each node N we need to compute the gradient
recursively

based on the gradient computed at nodes that follow it in
the graph

Start the recursion

RNNs – learning

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

55

Gradient on the outputs at time step t, for all i, t,

RNNs – learning

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

56

Backwards starting from the end of the sequence

Back-propagate gradients through time

RNNs – learning

Once the gradients on the internal nodes of the computational graph are

obtained, we can obtain the gradients on the parameter nodes

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

57

For all the parameters

RNNs – learning

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

58

RNNs – Bidirectional

prediction of y(t) which

may depend on the whole

input sequence e.g., speech

recognition

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

59

RNNs – Encoder and Decoder

encoder-decoder or

sequence-to-sequence

RNN architecture

To map input sequence to an

output sequence which is not

necessarily the same lenght:

NLP, speech recongition, …

Context

vector or

sequence

Attention meccanism to C could be added

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

60

Deep Recurrent Networks

The hidden recurrent state can be broken down into

groups organized hierarchically

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

61

Deep Recurrent Networks

Deeper computation (e.g., an MLP) can be

introduced in the input-to-hidden,

hidden-to-hidden and hidden-to-output parts.

This may lengthen the shortest path linking

different time steps.

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

62

Deep Recurrent Networks

The path-lengthening effect can be mitigated by

introducing skip connections

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

63

Recursive NNs

Generalization of recurrent networks

Applied for structurated data

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

64

Long-Term dependendencies

Vanishing/Exploding Gradients in RNN

Weight
Initialization

Methods

Constant Error
Carousel

● Identity-RNN
● np-RNN

● LSTM
● GRU

Echo State
Networks

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

65

Long-Term dependendencies

Random Wh initialization of RNN has no constraint

on eigenvalues

vanishing or exploding gradients in the initial epoch

Careful initialization of Wh with suitable

eigenvalues

allows the RNN to learn in the initial epochs

hence can generalize well for further iterations

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

66

Long-Term dependendencies

Trick #1(IRNN)

Wh initialized to Identity

Activation function: ReLU

Trick# 2 (np-RNN)

Wh positive definite (+ve real eigenvalues)

At least one eigenvalue is 1, others all less than equal to

one

Activation function: ReLU

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

67

Long Short-Term Memory

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

68

Gated RNNs

Long Short-Term memory

Gated Recurrent Unit

Idea

creating paths through time that have derivatives that

neither vanish nor explode

Gated RNNs

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

69

Gated RNNs

linear self-connections and a weight near

one on these connectionsLeaky Units

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

70

LSTM cell

The core idea is this cell

state Ct, it is changed

slowly, with only minor

linear interactions. It is very

easy for information to flow
along it unchanged.

ht-1

Ct-1

This sigmoid gate

determines how much

information goes thru

This decides what info

Is to add to the cell state

Output gate

Controls what

goes into output

Forget input

gate gate

Why sigmoid or tanh:

Sigmoid: 0,1 gating as switch.

Vanishing gradient problem in

LSTM is handled already.

M
L
–
 R

e
cu

rr
e
nt

 N
N

s
LSTM cell

it decides what component

is to be updated.

C’t provides change

contents

M
L
–
 R

e
cu

rr
e
nt

 N
N

s
LSTM cell

Updating the cell state

Decide what part of

the cell state to output

M
L
–
 R

e
cu

rr
e
nt

 N
N

s
RNN vs LSTM

M
L
–
 R

e
cu

rr
e
nt

 N
N

s
Peephole LSTM

Allows “peeping into the memory”. Can learn the fine distinction between

sequences of spikes separated by either 50 or 49 discrete time steps

M
L
–
 R

e
cu

rr
e
nt

 N
N

s
Gated Recurrent Unit (GRU)

It combines the forget and input into a single update gate.

It also merges the cell state and hidden state. This is simpler

than LSTM. There are many other variants too.

reset gate Update gate

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

76

Clipping gradients

“landscape” in which one finds “cliffs”

parameter gradient is very large

Clipping the gradient

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

77

RNN vs LSTM

Saliency Heatmap

Recent words more
salient

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

78

RNN vs LSTM

Saliency Heatmap

LSTM captures long term
dependencies

M
L
–
 R

e
cu

rr
e
nt

 N
N

s
Sequence to sequence chat model

M
L
–
 R

e
cu

rr
e
nt

 N
N

s
Speech recognition RNN

M
L
–
 R

e
cu

rr
e
nt

 N
N

s

81

The equivalent idea for RNNs

fix the input- hidden connections and the hidden-hidden
connections at random values

only learn the hidden-output connections

The learning is then very simple (assuming linear
output units)

Its important to set the random connections very

carefully so the RNN does not explode or die

See also Liquid State Machine

Reservoir computing

M
L
–
 R

e
cu

rr
e
nt

 N
N

s
Reservoir computing

M
L
–
 R

e
cu

rr
e
nt

 N
N

s
Reservoir computing

	Slide 1
	Slide 2: Recurrent Neural Networks
	Slide 3: Recurrent Neural Networks
	Slide 4: Adaptive filters
	Slide 5: Adaptive filters
	Slide 6: Adaline
	Slide 7: Adaptive filters
	Slide 8: Computational graphs
	Slide 9: Computational graphs
	Slide 10: Computational graphs
	Slide 11: Computational graphs
	Slide 12: Computational graphs
	Slide 13: RNNs
	Slide 14: Feed-forward NN
	Slide 15: Temporal dipendencies
	Slide 16: Reber Grammar
	Slide 17: Jordan’s sequential network
	Slide 18: Jordan’s sequential network
	Slide 19: Simple recurrent network
	Slide 20: Simple recurrent network
	Slide 21: Simple recurrent network
	Slide 22: Applications of RNNs
	Slide 23: Recurrent Neural Networks
	Slide 24: Recurrent Neural Networks
	Slide 25: Recurrent Neural Networks
	Slide 26: Recurrent Neural Networks
	Slide 27: Recurrent Neural Networks
	Slide 28: Recurrent Neural Networks
	Slide 29: Recurrent Neural Networks
	Slide 30: Vanilla RNN cell
	Slide 31: Unfolding
	Slide 32: Deep RNN
	Slide 33: Backpropagation Trough Time (BPTT)
	Slide 34: Backpropagation Trough Time (BPTT)
	Slide 35: Backpropagation Trough Time (BPTT)
	Slide 36: Backpropagation Trough Time (BPTT)
	Slide 37: Backpropagation Trough Time (BPTT)
	Slide 38: Backpropagation Trough Time (BPTT)
	Slide 39: Backpropagation Trough Time (BPTT)
	Slide 40: Backpropagation Trough Time (BPTT)
	Slide 41: Backpropagation Trough Time (BPTT)
	Slide 42: Backpropagation Trough Time (BPTT)
	Slide 43: Backpropagation Trough Time (BPTT)
	Slide 44: Backpropagation Trough Time (BPTT)
	Slide 45: Backpropagation Trough Time (BPTT)
	Slide 46: Vanishing gradients
	Slide 47: Exploiding gradients
	Slide 48: Eigenvalues and Stability
	Slide 49: Eigenvalues and Stability
	Slide 50: Fundamental DL problem
	Slide 51: RNNs – forward propagation
	Slide 52: RNNs – forward propagation
	Slide 53: RNNs – Teacher forcing
	Slide 54: RNNs – learning
	Slide 55: RNNs – learning
	Slide 56: RNNs – learning
	Slide 57: RNNs – learning
	Slide 58: RNNs – Bidirectional
	Slide 59: RNNs – Encoder and Decoder
	Slide 60: Deep Recurrent Networks
	Slide 61: Deep Recurrent Networks
	Slide 62: Deep Recurrent Networks
	Slide 63: Recursive NNs
	Slide 64: Long-Term dependendencies
	Slide 65: Long-Term dependendencies
	Slide 66: Long-Term dependendencies
	Slide 67: Long Short-Term Memory
	Slide 68: Gated RNNs
	Slide 69: Gated RNNs
	Slide 70: LSTM cell
	Slide 71: LSTM cell
	Slide 72: LSTM cell
	Slide 73: RNN vs LSTM
	Slide 74: Peephole LSTM
	Slide 75: Gated Recurrent Unit (GRU)
	Slide 76: Clipping gradients
	Slide 77: RNN vs LSTM
	Slide 78: RNN vs LSTM
	Slide 79: Sequence to sequence chat model
	Slide 80: Speech recognition RNN
	Slide 81: Reservoir computing
	Slide 82: Reservoir computing
	Slide 83: Reservoir computing

