
	

Machine Learning (part II)

Convolutional

Neural Network

Angelo Ciaramella



M
L 

–
C

N
N

2

Scale up neural networks to process very large 

images / video sequences

Sparse connections

Parameter sharing

Automatically generalize across spatial 

translations of inputs

Applicable to any input that is laid out on a grid 

(1-D, 2-D, 3-D, …)

Convolutional Neural Networks



M
L 

–
 C

N
N

3

Convolutional Neural Networks (CNN)

processing data that has a known grid-like topology

e.g., time series and image data

use convolution in place of general matrix multiplication 

in at least one of their layers 

Everything else stays the same

Maximum likelihood

Back-propagation

etc.

Introduction



M
L 

–
 C

N
N

4

Applications for ML in CV

classification of images

detection

segmentation 

caption generation 

synthesis 

inpainting

style transfer

super-resolution   

depth prediction

scene reconstruction   

Computer Vision



M
L 

–
 C

N
N

5

image

rectangular array of pixels 

each pixel has either a grey-scale intensity or more 

commonly a triplet of red, green, and blue channels 

each with its own intensity value

e.g., 8-bit numbers represented as integers in the range 

0, . . ., 255

video

three dimensional structures in which successive frames 

are stacked through time

Image data



M
L 

–
 C

N
N

6

CNN



M
L 

–
 C

N
N

7

Receptive field

captures the notion of locality

the weights form a small two-dimensional grid known as a 
filter (also called kernel)

the ReLU generates a non-zero output only when wTx 
exceeds a threshold of −w0

the unit acts as a feature detector that signals when it finds 
a sufficiently good match to its kernel

 

Feature detectors



M
L 

–
 C

N
N

8

Feature detectors



M
L 

–
 C

N
N

9

Convolution operation

Discrete convolution

Convolution



M
L 

–
 C

N
N

10

2D convolution operation

Commutative 

Cross-correlation

Convolution

flipping the kernel



M
L 

–
 C

N
N

11

Convolution

2D convolution 

example



M
L 

–
 C

N
N

12

Images



M
L 

–
 C

N
N

13

Images



M
L 

–
 C

N
N

14

Images



M
L 

–
 C

N
N

15

Convolution

Convolution example

Movement of the 

kernel



M
L 

–
 C

N
N

16

Three operations 

Convolution

like matrix multiplication

Take an input, produce an output (hidden layer)

Deconvolution 

like multiplication by transpose of a matrix

Used to back-propagate error from output to input

Reconstruction in autoencoder / RBM

Weight gradient computation

Used to backpropagate error from output to weights

Accounts for the parameter sharing

Operations



M
L 

–
 C

N
N

17

Three ideas

Sparse interactions 

Parameter sharing 

Equivariant representations 

Motivation



M
L 

–
 C

N
N

18

Sparse interactions

sparse 

(kernel of width 3)

Dense connections 

no longer sparse



M
L 

–
 C

N
N

19

Sparse interactions

sparse 

(receptive field)

Dense 

connections 

no longer sparse



M
L 

–
 C

N
N

20

Sparse interactions

even though direct connections in a convolutional net are very sparse, 

units in the deeper layers can be indirectly connected to all or most of the 

input image



M
L 

–
 C

N
N

21

Goal 

same parmeter for more that one function in a model 

Full connected

Tied weights – each element of the weight matrix is used exactly 

once when computing the oputput of a layer

CNN

each member of the kernel is used at at every position of the 

input 

Parameter sharing means that rather than learning a separate set 

of parameters for every location, we learn only one set

Convolution is dramatically more efficient than dense matrix 

multiplication in terms of memory requirements and statistical 

efficiency

Parameter sharing 



M
L 

–
 C

N
N

22

Parameter sharing 

The black arrows indicate uses of the central element of a 3-element 

kernel in a convolutional model. Due to parameter sharing, this

single parameter is used at all input locations.



M
L 

–
 C

N
N

23

Goal 

layers have a property called equivariance to 

translation

if the input changes, the output changes in the same way

f(x) is equivariant to a function g if f(g(x)) = g(f(x)) if we let 

g be any function that translates the input

i.e., shifts it, then the convolution function is equivariant to g

I - image brightness 

g - function mapping one image function to another such 

that I’ = g(I), I’(x,y) = I(x -1, y) (shift every pixel of I one unit 

to right) 

Equivariance to translation



M
L 

–
 C

N
N

24

Goal 

If we apply this transformation to I then apply 

convolution the result will be the same as if we pplied 

convolution to I’ then applied the transformation g to 

the output

If we move the object in the input its representation will 

move the same amount in the output    

Convolution is not naturally equivariant to some other 

transformations 

Changes in the scale or rotation of an image  

Equivariance to translation



M
L 

–
 C

N
N

25

Equivariance to translation

Efficiency of edge detection

Input Output

Kernel



M
L 

–
 C

N
N

26

Equivariance to translation

10.3 filter 10.4 filter



M
L 

–
 C

N
N

27

Stages



M
L 

–
 C

N
N

28

ReLU activation function

Rectified Linear Units



M
L 

–
 C

N
N

29

ReLU generalizations

Slope

Absolute value rectification  

Rectified Linear Units



M
L 

–
 C

N
N

30

Leaky ReLU

max(αz, z)



M
L 

–
 C

N
N

31

Pooling function 

replaces the output of the net at a certain location with 
a summary statistic of the nearby outputs

helps to make the representation become 
approximately invariant to small translations of the 
input

Max pooling

maximum output within a rectangular neighborhood

Average of a rectangular neighborhood

L2 norm of a rectangular neighborhood

Pooling



M
L 

–
 C

N
N

32

Pooling



M
L 

–
 C

N
N

33

Pooling

Invariance – 

half of the values in the top 

row have changed



M
L 

–
 C

N
N

34

Pooling

Invariance -invariant to transformations of the input



M
L 

–
 C

N
N

35

Pooling

Pooling with downsampling. Max-pooling with a pool width of three and 

a stride between pools of two. It reduces the representation size by a 

factor of two, which reduces the computational and statistical burden 

on the next layer



M
L 

–
 C

N
N

36

CNN



M
L 

–
 C

N
N

37

Input observed data

Convolution 

Variants of the CNN

input unit within channel i at row j and column k



M
L 

–
 C

N
N

38

downsampled convolution function c such that

s is the stride of the downsampled convolution

It is possible to define a separate stride for each 

direction of motion

Variants of the CNN



M
L 

–
 C

N
N

39

Variants of the CNN

Stride of two. Convolution with a stride length of two implemented in a 

single operation.



M
L 

–
 C

N
N

40

Variants of the CNN

Convolution with a stride greater than one pixel is mathematically equivalent 

to convolution with unit stride followed by downsampling.



M
L 

–
 C

N
N

41

Essential feature zero-pad

to make it wider

Without zero-padding 

the width of the representation shrinks by one pixel less 

than the kernel width at each layer

shrinking the spatial extent of the network rapidly or 

using small kernels

Variants of the CNN



M
L 

–
 C

N
N

42

Variants of the CNN

The effect of zero 

padding on network 

size

representation

shrinks by five pixels 

at each layer

kernel of width six 

at every layer

Sixteen pixels 

Adding five implicit zeroes



M
L 

–
 C

N
N

43

Variants of the CNN

Same convolution



M
L 

–
 C

N
N

44

Three special cases

valid convolution

no zero-padding

all pixels in the output are a function of the same number of 
pixels in the input

the output shrinks at each layer

same convolution

zero-padding is added to keep the size of the output equal 
to the size of the input

the optimal amount of zero padding (in terms of test 
set classification accuracy) lies somewhere between 
“valid” and “same” convolution

Zero-padding



M
L 

–
 C

N
N

45

adjacency matrix (no convolution) in the graph of 

our MLP is the same

Weights      by a 6-D tensor  

Unshared convolution

i, the output channel, j, the output row, k, the output column, l, the input 

channel, m, the row offset within the input, and n, the column offset within 

the input



M
L 

–
 C

N
N

46

Unshared convolution

Local connections

Convolution

Full connections 

patch size of two pixels



M
L 

–
 C

N
N

47

Tiled convolution

t different choices of kernel stack in each 

direction



M
L 

–
 C

N
N

48

Tiled convolution

Locally connected layer 

(no sharing)

Tiled convolution has a set of

t (=2) different kernels

Traditional convolution (tiled

Convolution with t = 1)



M
L 

–
 C

N
N

49

Three operations for training any depth of 

feedforward convolutional network

convolution

backprop from output to weights

backprop from output to inputs

We consider strided CNN

Learning



M
L 

–
 C

N
N

50

Minimize the loss function

Derivatives w.r.t. the weights in the kernel 

Learning



M
L 

–
 C

N
N

51

If the layer is not the bottom layer 

Learning



M
L 

–
 C

N
N

52

Structured output

recurrent convolutional network 

for pixel labeling

pooling operator with unit stride



M
L 

–
 C

N
N

53

Data types

Data types



M
L 

–
 C

N
N

54

reduce the cost of CNN training 

use features that are not trained in a supervised 

fashion

simply initialize them randomly

design them by hand

one can learn the kernels with an unsupervised criterion 

(clustering)

random filters

Features 



M
L 

–
 C

N
N

55

Some of the key design principles of neural 
networks were drawn from neuroscience

mammalian vision system

David Hubel and Torsten Wiesel (Nobel Prize)

neurons in the early visual system responded most strongly 
to very specific patterns of light, such as precisely oriented 
bars, but responded hardly at all to other patterns

Primary visual cortex (V1)

Spatial map

Simple cells

Complex cells

Neuroscientific basis



M
L 

–
 C

N
N

56

Grandmother cells – human brain

medial temporal lobe 

cells that respond to some specific concept and are 

invariant to many transformations of the input

The closest analog to a CNN’s last layer of features is 

the brain area called the inferotemporal cortex

Neuroscientific basis



M
L 

–
 C

N
N

57

Gabor functions

Reverse correlation shows us that most V1 cells have weights that are described

by Gabor functions



M
L 

–
 C

N
N

58

Gabor functions

Many machine learning algorithms (e.g, Independent Component Analysis)

learn features that detect edges or specific

colors of edges when applied to natural images. These feature detectors are 

reminiscent of the Gabor functions known to be present in primary visual cortex. 

Unsupervised learning                      First layer convolution kernels



M
L 

–
 C

N
N

59

Saliency maps 

Interpretability 

aim to identify those regions of an image that are most 

significant in determining the class label

Grad-CAM (gradient class activation mapping)

derivatives of the output-unit pre-activation a(c) for a 

given class c, before the softmax, with respect to the 

pre-activations aij
(k) of all the units in the final 

convolutional layer for channel k

Saliency maps

average of derivatives



M
L 

–
 C

N
N

60

Saliency maps



M
L 

–
 C

N
N

61

Object detection

Bounding box



M
L 

–
 C

N
N

62

Object detection



M
L 

–
 C

N
N

63

Faster R-CNN



M
L 

–
 C

N
N

64

Image segmentation



M
L 

–
 C

N
N

65

U-net



M
L 

–
 C

N
N

66

Style transfer



M
L 

–
 C

N
N

67

Recent models

LeNet

AlexNet

VGGNet

GoogLeNet

ResNet

ZFNet

…

 

CNN models


	Slide 1
	Slide 2: Convolutional Neural Networks
	Slide 3: Introduction
	Slide 4: Computer Vision
	Slide 5: Image data
	Slide 6: CNN
	Slide 7: Feature detectors
	Slide 8: Feature detectors
	Slide 9: Convolution
	Slide 10: Convolution
	Slide 11: Convolution
	Slide 12: Images
	Slide 13: Images
	Slide 14: Images
	Slide 15: Convolution
	Slide 16: Operations
	Slide 17: Motivation
	Slide 18: Sparse interactions
	Slide 19: Sparse interactions
	Slide 20: Sparse interactions
	Slide 21: Parameter sharing 
	Slide 22: Parameter sharing 
	Slide 23: Equivariance to translation
	Slide 24: Equivariance to translation
	Slide 25: Equivariance to translation
	Slide 26: Equivariance to translation
	Slide 27: Stages
	Slide 28: Rectified Linear Units
	Slide 29: Rectified Linear Units
	Slide 30: Leaky ReLU
	Slide 31: Pooling
	Slide 32: Pooling
	Slide 33: Pooling
	Slide 34: Pooling
	Slide 35: Pooling
	Slide 36: CNN
	Slide 37: Variants of the CNN
	Slide 38: Variants of the CNN
	Slide 39: Variants of the CNN
	Slide 40: Variants of the CNN
	Slide 41: Variants of the CNN
	Slide 42: Variants of the CNN
	Slide 43: Variants of the CNN
	Slide 44: Zero-padding
	Slide 45: Unshared convolution
	Slide 46: Unshared convolution
	Slide 47: Tiled convolution
	Slide 48: Tiled convolution
	Slide 49: Learning
	Slide 50: Learning
	Slide 51: Learning
	Slide 52: Structured output
	Slide 53: Data types
	Slide 54: Features 
	Slide 55: Neuroscientific basis
	Slide 56: Neuroscientific basis
	Slide 57: Gabor functions
	Slide 58: Gabor functions
	Slide 59: Saliency maps
	Slide 60: Saliency maps
	Slide 61: Object detection
	Slide 62: Object detection
	Slide 63: Faster R-CNN
	Slide 64: Image segmentation
	Slide 65: U-net
	Slide 66: Style transfer
	Slide 67: CNN models

