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Convolutional Neural Networks

e Scale up neural networks to process very large
images / video sequences
E Sparse connections

e Parameter sharing

r Automatically generalize across spatial
translations of inputs

r Applicable to any input that is laid out on a grid
(1-D, 2-D, 3-D, ...)

ML — CNN

f <]
K%



Introduction

¢ Convolutional Neural Networks (CNN)

E processing data that has a known grid-like topology

e.g., time series and image data

E use convolution in place of general matrix multiplication
in at least one of their layers

r Everything else stays the same
E Maximum likelihood
® Back-propagation

B efc.
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Computer Vision

ML — CNN
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e Applications for ML in CV

classification of images
detection
segmentation

caption generation
synthesis

inpainting

style transfer
super-resolution

depth prediction

scene reconstruction



I'mage data

E image
e rectangular array of pixels

e each pixel has either a grey-scale intensity or more
commonly a triplet of red, green, and blue channels
each with its own intensity value

E e.g., 8-bit numbers represented as integers in the range
O,... 255
¥ video

e three dimensional structures in which successive frames
are stacked through time
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CNN
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Feature detectors

r Receptive field

e captures the notion of locality

z = ReLU(w'x + wg)

e the weights form a small two-dimensional grid known as a
filter (also called kernel)

e the ReLU generates a non-zero output only when w'

exceeds a threshold of —w,

X

e the unit acts as a feature detector that signals when it finds
a sufficiently good match to its kernel
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Feature detectors

Figure 10.1 (a) lllustration of a re- image

ceptive field, showing a unit in a hid-

den layer of a network that receives : -
input from pixels in a 3 x 3 patch of / hidden units
the image. Pixels in this patch form /

AN
X

the receptive field for this unit. (b)
The weight values associated with <
this hidden unit can be visualized as <
a small 3 x 3 matrix, known as a ker-
nel. There is also an additional bias
parameter that is not shown here.
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Convolution

¢ Convolution operation

s(t) = /:I:(rL)*ff.r(t —a)da s(t) = (a*w)(t)

¥ Discrete convolution

o0

s(t) = (xxw)(t) = Z r(a)w(t — a)

A=—2C0

ML — CNN
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Convolution

¢ 2D convolution operation

S(i,7) = (I = ZZI (m,n)K (i —m,j—n)

¢ Commutative
flipping the kernel

S(i,j) = (K« 1)(i,j) =Y Y I(i—m,j—n)K(m,n)
T T

e Cross-correlation

S(i.j) = (I * K)(i,j) = ZZIH-”: j 4 n)K(m,n)
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%



Convolution

ML — CNN
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Images

3 Colour Channels
£
Height: 4 Units
(Pixels)
RV

Width: 4 Units
(Pixels)
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Images
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Figure 10.6

(b) The kernel here has 27 weights (plus a bias parameter not shown) and can be visualized as a 3 x 3 x 3

tensor.
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hidden units

23 | —-2.1] 4.0

(a) (b)

(a) lllustration of a multi-dimensional filter that takes input from across the R, G, and B channels.
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Images

ML — CNN
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Figure 10.7 The multi-dimensional convolu-
tional filter layer shown in Figure 10.6 can be
extended to include multiple independent filter
channels.
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Convolution
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Operations

e Three operations

e Convolution
like matrix multiplication
Take an input, produce an output (hidden layer)

e Deconvolution
like multiplication by transpose of a matrix
Used to back-propagate error from output to input
Reconstruction in autoencoder / RBM

E Weight gradient computation

Used to backpropagate error from output to weights

ML — CNN

Accounts for the parameter sharing
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Motivation

¢ Three ideas
E Sparse interactions
e Parameter sharing

e Equivariant representations
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Sparse interactions

(kernel of width 3)

sparse
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Sparse interactions

sparse

(receptive field)
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Sparse interactions

ML — CNN
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even though direct connections in a convolutional net are very sparse,
units in the deeper layers can be indirectly connected to all or most of the
iInput image
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Parameter sharing

r Goadl

E same parmeter for more that one function in a model

e Full connected

Tied weights — each element of the weight matrix is used exactly
once when computing the oputput of a layer

E CNN

each member of the kernel is used at at every position of the
input

Parameter sharing means that rather than learning a separate set
of parameters for every location, we learn only one set

Convolution is dramatically more efficient than dense matrix
multiplication in terms of memory requirements and statistical
efficiency

ML — CNN
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Parameter sharing

ML — CNN
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The black arrows indicate uses of the central element of a 3-element
kernel in a convolutional model. Due to parameter sharing, this
single parameter is used at all input locations.
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Equivariance to translation

ML — CNN
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r Goal

e layers have a property called equivariance to
translation
if the input changes, the output changes in the same way

f(x) is equivariant to a function g if f(g(x)) = g(f(x)) if we let
g be any function that translates the input

m i.e., shifts it, then the convolution function is equivariant to g
| - image brightness

g - function mapping one image function to another such
that I’ = g(l), I'(x,y) = I(x -1, y) (shift every pixel of | one unit
to right)

23



Equivariance to translation

r Goal

e If we apply this transformation to | then apply
convolution the result will be the same as if we pplied
convolution to I’ then applied the transformation g to
the output

e If we move the object in the input its representation will

move the same amount in the output

e Convolution is not naturally equivariant to some other
transformations

Changes in the scale or rotation of an image

ML — CNN
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Equivariance to translation

Input

ML — CNN
(-

Kernel

.
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Output

Efficiency of edge detection
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Equivariance to translation

Figure 10.4 lllustration of edge detection using convolutional filters showing (a) the original image, (b) the result
of convolving with the filter (10.3) that detects vertical edges, and (c) the result of convolving with the filter (10.4)
that detects horizontal edges.
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Stages

Complex layer terminology

Simple layer terminology

Next layer

Next layer

i

Convolutional Layer

Pooling stage

Pooling layer

\

A

Detector stage:

Nonlinearity
e.g., rectified linear

Detector layer: Nonlinearity
e.g., rectified linear

A

A

Convolution stage:

Affine transform

Convolution layer:

Affine transform

A

ML — CNN
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Input to layer

Input to layers

27



Rectified Linear Units

¥ RelLU activation function

g(z) = max{0, z}

The Rectified Linear Activation Function

max{0, z}

g(z)

ML — CNN
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Rectified Linear Units

e RelU generalizations

e Slope

hi = g(z,a); = max(0, z;) + a; min(0, z;)

e Absolute value rectification

;g =—1 g(z) = |z|

ML — CNN

5 o
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Leaky Rel U

Leaky RelLU activation function
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Pooling

ML — CNN
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¢ Pooling function

replaces the output of the net at a certain location with
a summary statistic of the nearby outputs

helps to make the representation become
approximately invariant to small translations of the

input

Max pooling

maximum output within a rectangular neighborhood
Average of a rectangular neighborhood

L? horm of a rectangular neighborhood
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Pooling

ML — CNN

3.0

3.0

3.0

3.0
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3.0

max pooling
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ML — CNN

Pooling

P

POOLING STAGE

DETECTOR STAGE

Invariance —
half of the values in the top
row have changed
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Pooling

Large response Large response

in pooling unit

in pooling unit

Large Large

response response

in detector in detector

unit 1 unit 3

LilE|s| | b||&||s
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L, S

Invariance -invariant to transformations of the input
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Pooling

O S E

Pooling with downsampling. Max-pooling with a pool width of three and
a stride between pools of two. It reduces the representation size by a
factor of two, which reduces the computational and statistical burden

on the next layer

ML — CNN

A
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CNN

ML — CNN

458
F2N

input image
224 x 224 x 3

— 224 x 224 X 64

— 112 x 112 x 128
14 x 14 x 512

+ 56 x 56 x 256 1 1x1x4096 1x1x 1000

! !

T
T 7 x 7 X 512

28 x 28 x 512

© convolution — RelLU
© max pooling
O fully connected — Rel U

O softmax activation

Figure 10.10 The architecture of a typical convolutional network, in this case a model called VGG-16.
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Variants of the CNN

e Input observed data

\Y Vi jik

input unit within channel i at row j and column k

¢ Convolution

Zé,j,k — E V.-T,j—l—m—l,k—l—ﬂ—lK*elJ,m:n

[,m,n

ML — CNN
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Variants of the CNN

» downsampled convolution function ¢ such that

Zi:jJ’-: — G(K:Va S)&l:j:k: — § [Vl:(j—l):{:;—I—-m,(k:—l}xs—l—ﬂ,Ki,Lm,?J

[.m.n

e s is the stride of the downsampled convolution

E It is possible to define a separate stride for each
direction of motion

ML — CNN



Variants of the CNN

ONENONENO

h " 1
Strided
convolution

Stride of two. Convolution with a stride length of two implemented in a
single operation.

ML — CNN

L.
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Variants of the CNN

OO

Downsampling

+ b ] 4
Convolution

- ] T2 T3 T4 L5

Z
O

|

z Convolution with a stride greater than one pixel is mathematically equivalent
o to convolution with unit stride followed by downsampling.

it 40

N



Variants of the CNN

¢ Essential feature zero-pad V

E to make it wider

r Without zero-padding

e the width of the representation shrinks by one pixel less
than the kernel width at each layer

e shrinking the spatial extent of the network rapidly or
using small kernels

ML — CNN
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Variants of the CNN

kernel of width six

at every layer |
representation
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Variants of the CNN

Same convolution

o

“® ML= CNN
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Zero-padding

ML — CNN

o
X0

e Three special cases

® valid convolution
no zero-padding

all pixels in the output are a function of the same number of
pixels in the input

the output shrinks at each layer

E same convolution

zero-padding is added to keep the size of the output equal
to the size of the input

e the optimal amount of zero padding (in terms of test
set classification accuracy) lies somewhere between
“valid” and “same” convolution



Unshared convolution

r adjacency matrix (no convolution) in the graph of
our MLP is the same

e Weights W by a 6-D tensor

Z'i':j: : : : [H,3+m—1,k—|—n—1“qu_;,'rq.’qumﬂ]

[,m,n

|, the output channel, |, the output row, k, the output column, I, the input
channel, m, the row offset within the input, and n, the column offset within
the input

ML — CNN
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Unshared convolution

;£\ ‘ AN I .
% 5 : Local connections

patch size of two pixels

Full connections
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Tiled convolution

ML — CNN

A o

Channel coord

O O O O O t different choices of kernel stack in each
direction
O O O O Onp
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Tiled convolution

Locally connected layer
(no sharing)

Tiled convolution has a set of
t (=2) different kernels

Traditional convolution (tiled
Convolution witht =1)
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Learning

ML — CNN
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r Three operations for training any depth of
feedforward convolutional network

E convolution
E backprop from output to weights

e backprop from output to inputs

¥ We consider strided CNN

Zi,j,ﬁ: = E(K-.'V: S}‘i,j,k = Z [V&,{j—lj:==:3+m,(.¢:—1]xs—i—nKé,I,m,n]

l.mmn
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Learning

¥ Minimize the loss function

J(V,K)

e Derivatives w.r.t. the weights in the kernel

0
g(G, V. 8)ijki = IKrs J(V, K)—ZGmn (m—1)xs+k,(n—1)xs+1
?.j m.,mn

Gi gk = azuk J(V, K)

ML — CNN

5 o
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Learning

e If the layer is not the bottom layer

",
hiK.G.s);j:ip = J(V. K
(K, G, s) 3.k 5Vi,j,k ( . )
SI_t_ s.t.

(I-1)xs+m=j (n—1)xs+p=k

ML — CNN

5 o

E q,i,m,p qfﬂ
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Structured output

pooling operator with unit stride

ML — CNN

%

recurrent convolutional network
for pixel labeling
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Data types

Single channel

Multi-channel

Audio waveform: The axis we
convolve over corresponds to
time. We discretize time and
measure the amplitude of the
waveform once per time step.

Skeleton animation data: Anima-
tions of 3-D computer-rendered
characters are generated by alter-
ing the pose of a “skeleton” over
time. At each point in time, the
pose of the character is described
by a specification of the angles of
each of the joints in the charac-
ter's skeleton. Each channel in
the data we feed to the convolu-
tional model represents the angle
about one axis of one joint.

Audio data that has been prepro-
cessed with a Fourier transform:
We can transform the audio wave-
form into a 2D tensor with dif-
ferent rows corresponding to dif-
ferent frequencies and different
columns corresponding to differ-
ent points in time. Using convolu-
tion in the time makes the model
equivariant to shifts in time. Us-
ing econvolution across the fre-
quency axis makes the model
equivariant to frequency, so that
the same melody played in a dif-
ferent octave produces the same
representation but at a different
height in the network's output.

Color image data: One channel
contains the red pixels, one the
green pixels, and one the blue
pixels. The convolution kernel
moves over both the horizontal
and wvertical axes of the image,
conferring translation eguivari-
ance in both directions.

1D
2D

Z

Z

U

|

—

= 3D

e

PR 3
St

Volumetric data: A common
source of this kind of data is med-
ical imaging technology, such as
CT scans,

Color video data: One axis corre-
sponds to time, one to the height
of the video frame, and one to
the width of the video frame.

Data types



Features

r reduce the cost of CNN training

e use features that are not trained in a supervised
fashion
simply initialize them randomly
design them by hand

one can learn the kernels with an unsupervised criterion
(clustering)

random filters

ML — CNN
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Neuroscientific basis

¢ Some of the key design principles of neural
networks were drawn from neuroscience

e mammalian vision system
e David Hubel and Torsten Wiesel (Nobel Prize)

neurons in the early visual system responded most strongly
to very specific patterns of light, such as precisely oriented
bars, but responded hardly at all to other patterns

¢ Primary visual cortex (V1)
e Spatial map
e Simple cells

e Complex cells

ML — CNN
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Neuroscientific basis

¥ Grandmother cells — human brain

e medial temporal lobe

e cells that respond to some specific concept and are
invariant to many transformations of the input

e The closest analog to a CNN’s last layer of features is
the brain area called the inferotemporal cortex

ML — CNN
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Gabor functions
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Reverse correlation shows us that most V1 cells have weights that are described
by Gabor functions
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Gabor functions

Unsupervised learning First layer convolution kernels

Many machine learning algorithms (e.g, Independent Component Analysis)

learn features that detect edges or specific
colors of edges when applied to natural images. These feature detectors are

reminiscent of the Gabor functions known to be present in primary visual cortex.
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Saliency maps

¢ Saliency maps
e Interpretability

E aim to identify those regions of an image that are most
significant in determining the class label

e Grad-CAM (gradient class activation mapping)

e derivatives of the output-unit pre-activation al for a
given class ¢, before the softmax, with respect to the
pre-activations ;) of all the units in the final
convolutional layer for channel k

5q©
Ak = ?Lszz - |::> L:Zaﬁ:A{k)
k

s average of derivatives >9

ML — CNN
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Saliency maps

Original image Saliency map for ‘dog

Figure 10.15 Saliency maps for the
VGG-16 network with respect to the
‘dog’ and ‘cat’ categories. [From Sel-
varaju et al. (2016) with permission.]

ML — CNN

b

Saliency map for ‘cat’
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Object detection

Bounding box
(b-'fﬁ by: bW: bH)

Figure 10.19 An image containing several objects from different classes in which the location of each
object is labelled by a close-fitting rectangle known as a bounding box. Here blue boxes
correspond to the class ‘car’, red boxes to the class ‘pedestrian’, and orange boxes to the
class ‘traffic light'. [Original image courtesy of Wayve Technologies Lid.]
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Object detection

ML — CNN

R 34
A

Figure 10.20 lllustration of the
intersection-over-union metric for
quantifying the accuracy of a bound-
ing box prediction. If the predicted
bounding box is shown by the blue
rectangle and the ground truth by the
red rectangle, then the intersection-
over-union is defined as the ratio of
the area of the intersection of the
boxes, shown in green on the left,
divided by the area of their union,
shown in green on the right.

area of intersection

area of union
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Faster R-CNN

ML — CNN

Figure 10.25 Schematic illustration of multiple de-
tections of the same object at nearby
locations, along with their associ-
ated probabilities. The red bounding
box corresponds to the highest over-
all probability. Non-max suppres-
sion eliminates the other overlapping
candidate bounding boxes shown in
blue, while preserving the detection
of another instance of the same ob-
ject class shown by the bounding box
in green.
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Image segmentation

Figure 10.26 Example of an image and its corresponding semantic segmentation in which each pixel is
coloured according to its class. For example, blue pixels correspond to the class ‘car’, red pixels to the class
‘pedestrian’, and orange pixels to the class ‘traffic light'. [Courtesy of Wayve Technologies Ltd.]

ML — CNN
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U-net

Figure 10.31 The U-net architecture has a symmetrical arrangement of down-sampling and up-sampling lay-
ers, and the output from each down-sampling layer is concatenated with the corresponding up-sampling layer.

“* ML-CNN
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Style transfer

Figure 10.32 An example of neural style transfer showing a photograph of a canal scene (left) that has been
rendered in the style of The Wreck of a Transport Ship by J. M. W. Turner (centre) and in the style of The Starry
Night by Vincent van Gogh (right). In each case the image used to provide the style is shown in the inset. [From
Gatys, Ecker, and Bethge (2015) with permission.]
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CNN models

ML — CNN

5 o

g Recent models

LeNet
AlexNet
VGGNet
GoogleNet
ResNet
ZFNet
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