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Machine Learning (part II)

Optimization Strategies
And 

Meta-Algorithms
Angelo Ciaramella
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Many optimization techniques
General templates
Subroutines that can be incorporated into many
different algorithms

Methodologies
Batch Normalization
Coordinate descent
Polyak Averaging
Supervaised Pretraining
Design Models to Aid Optimization
Curriculum learning

Introduction
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Input data 
Normalization
Standardization

Normalization
Values in the range [0, 1] 

Normalization and Standardization

!𝐱 =
𝐱 −min(𝐱)

max 𝐱 −min(𝐱)

!𝐱 =
𝐱
𝐱 ,
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Standardization
zero mean
unit standard deviation

Normalization and Standardization

!𝑥./ =
𝑥./ − 𝜇.
𝜎.

𝜇. =
𝟏
𝑁
4
.56

7

𝑥./ 𝜎., =
𝟏

𝑁 − 1
4
.56

7

𝑥./ − 𝜇. ,
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Linear rescaling
Correlations amongst the variables

Normalization and Standardization

9𝐱 =
𝟏
𝑁
4
.56

7

𝐱/ Σ =
𝟏

𝑁 − 1
4
.56

7

𝐱/ − 9𝐱 𝐱/ − 9𝐱 ;

𝐱 = 𝑥6, 𝑥,, … , 𝑥> ;

Σ𝐮@ = 𝜆@𝐮@

!𝐱/ = 𝚲C
6
,𝐔; 𝐱/ − 9𝐱

𝐔 = 𝑢6, 𝑢,, … , 𝑢>

𝚲 = 𝑑𝑖𝑎𝑔 𝜆6, 𝜆,, … , 𝜆>
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Whitening

Use of the eigenvectors of the covariance matrix of a distribution so that its 
Covariance matrix becomes the unit matrix   
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Batch normalization
adaptive reparametrization
gradient update each parameter

all layers simultaneously

DNN
Only one unit per layer
No activation functions

Batch Normalization
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DNN
Output 

Output layer i

Back-propagation algorithm

New value

Batch Normalization
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Second order series approximation

Batch Normalization

new point x
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Second-order term arising from this update

very hard to choose an appropriate learning rate

Batch normalization
elegant way of reparametrizing almost any deep
network
Reduces the problem of coordinating updates across
many layers
applied to any input or hidden layer in a network

Batch Normalization

can be large
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Let H be a minibatch of activations of the layer to 
normalize

Broadcasting the vector μ and the vector σ to be 
applied to every row of the matrix H

At training time 

Batch Normalization
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At test time 
μ and σ may be replaced by running averages that
were collected during training time

In order to maintain the expressive power of the 
network

Batch Normalization

learned variables
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Goal
minimize f(x) with respect to a single variable xi

successivelly, minimize it with respect to another variable xj
and so on
repeatedly cycling through all variables
we are guaranteed to arrive at a (local) minimum

Block coordinate descent
minimizing with respect to a subset of the variables
simultaneously

Coordinate descent 
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e.g., sparse coding

training algorithm into two sets
dictionary parameters W
code representations H

Minimizing the objective function with respect to either
one of these sets of variables is a convex problem

optimizing W with H fixed, then optimizing H with W fixed

Coordinate descent 

function J is not convex
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Goal
averaging several points in the trajectory through
parameter space visited by an optimization algorithm
t iterations of gradient descent visit points θ(1), . . . , 
θ(t)

For non-convex problems

Polyak Averaging
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Goal
train a simpler model to solve the task, then make the 
model more complex

Greedy algorithms
break a problem into many components
solve for the optimal version of each component in 
isolation
combining is not guaranteed to yield an optimal
complete solution
followed by a fine-tuning stage

speed it up and improve the quality of the solution it
finds

Supervised pretraining 
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Greedy supervised pretraining
supervised learning training task involving only a subset of 
the layers in the final neural network
each added hidden layer is pretrained as part of a shallow
supervised MLP

e.g., deep convolutional network (eleven weight
layers) 

Use the first four and last three layers from this network to 
initialize even deeper networks 

with up to nineteen layers of weights

The middle layers of the new deep network are initialized
randomly

Supervised pretraining 
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Supervised pretraining 

Greedy pretraining
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FitNets
Teacher - training a network that has low enough depth
and great enough width (number of units per layer) to 
be easy to train
Student - much deeper and thinner (eleven to nineteen
layers) and would be difficult to train with SGD under 
normal circumstances

Training 
predict the output for the original task
predict the value of the middle layer of the teacher
network

Supervised pretraining 
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Goal
choosing initial points to ensure that local optimization
spends most of its time in well-behaved regions of 
space
construct a series of objective functions over the same
parameters
“blurring” the original cost function

Continuation methods
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Curriculum learning (or shaping)
learning process to begin by learning simple concepts
progress to learning more complex concepts that
depend on these simpler concepts

stochastic curriculum 
random mix of easy and difficult examples is always
presented to the learner
the average proportion of the more difficult examples
is gradually increased

Continuation methods


