; ||||||||||||||||||||||
2| E TECNOLOGIE

Machine Learning (part Il)

Radial Basis Functions
Neural Network

Angelo Ciaramella



ML — RBF NN

% g

Introduction

¢ Regression

E regression models based on linear combinations of
fixed basis functions

¢ Radial Basis Functions find f such that

N

fxn) =ta  f(x) =) wah(]jx — x|

n=1



RBF NN

ML — RBF NN

Architecture of RBF NN
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e Outputs

M
Vi = z Wi @ (X) + wio
=1

¥ For the case of Gaussian functions

2
o=l
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¥ Result

E Best approximation - in the set of approximating
functions there is one function which has minimum
approximating errore for any given function to be
approsimated (Girosi and Poggio, 1990)

e This property is not shared by MLP

ML — RBF NN
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¢ Basis functions

e Unsupervised learning (e.g., clustering)

r Network mapping
M
Ve(X) = 2 ij¢j(X)
j=0

¢ Matrix notation
yr(X) = WP
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e Sum-of-squares error

E = %Z D) = 67

¢ Differentiating with respect w;; and setting the
derivative to zero

D> i) — )g) = 0

¢ Matrix notation

ML — RBF NN

(PTO)WT = oTT
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e Providing the matrix is non-singular we may invert

WT = @'T

» Pseudo-inverse
o' = (0Td) @7

¥ Pseudoinverse property
P =1

e If the matrix 7T ¢ is not singular equation does not have a
unique solution

® In practical, use a SVD (Singular Value Decomposition)
methodology
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e Multi-Layer Neural Networks

e all units are heaviside
Lippmann 1987; Lonstaff and Cross 1987
Single layer of weights

m Hyperplane decision boundary
Two layer of weights
m Decision boundary which sorround a signle convex region of the
input space
Three layer of weights

m Can generate arbitrary decision regisons, non-convex and
disjoint
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¢ Multi-Layer Neural Networks

e all units are sigmoidal

Two layer of weights

m Can approximate arbitrarly well any functional (one-one or many-
one) continuos mapping from one finite-dimensional space to
another, provided the number M of hidden units is sufficiently large

m Universal Approximatin Theorem (Hornik et al., 1989; Cybenko,
1989) — Feedforward Net with linear output layer and at least one
hidden layer with «squashing» activation function (e.g., logistic) can
approximate any Borel measurable function from one-finite
dimensional space to another provided the number M of hidden
units is sufficiently large

m Corollary (Classification) — Networks with sigmoidal non-linearities

% and two layers of weights can approximate any decision boundary
N to arbitrary accuracy (universal non-linear discriminant functions)
o0 o
o Three layer of weights
I . . .
g m Can approximate, to arbitrary accuracy, any smooth mapping
Q.

&

10



Properties and Depth

¢ RBF NN

E Best approximation - in the set of approximating
functions there is one function which has minimum
approximating error for any given function to be
approsimated (Girosi and Poggio, 1990)

E This property is not shared by MLP

ML — RBF NN
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r Feedforward NN layer may be infeasibly large
and may fail to learn and generalize correctly

(Barron, 1993)

e Functions representable with a deep rectifier net
can require an exponential number of hidden units
with a shallow (one hidden layer) network
(Montufar et al., 2014)
® Representation learning point

e Better generalization (empirically)
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Figure 6.6: Empirical results showing that deeper networks generalize better when used
to transcribe multi-digit numbers from photographs of addresses. Data from Coodfellow

al. (2011d). The test set accuracy consistently increases with increasing depth. See
Fig. 6.7 for a control experiment demonstrating that other increases to the model size do
not yield the same effect.
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Effect of Number of Parameters
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Figure 6.7: Deeper models tend to perform better. This is not merely because the model is
larger. This experiment from Coodfellow «f ol (2011d) shows that increasing the number
of parameters in lavers of convolutional networks without increasing their depth is not
nearly as effective at increasing test set performance. The legend indicates the depth of
network used to make each curve and whether the curve represents variation in the size of
the convolutional or the fully connected layers. We observe that shallow models in this
context overfit at around 20 million parameters while deep ones can benefit from having
over 60 million. This suggests that using a deep model expresses a useful preference over
the space of functions the model can learn. Specifically, it expresses a belief that the
function should consist of many simpler functions composed together. This could result

either in learning a representation that is composed in turn of simpler representations (e.g.,

corners defined in terms of edges) or in learning a program with sequentially dependent
steps (e.g., first locate a set of objects, then segment them from each other, then recognize
them).
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