
	

Machine Learning (part II)

Radial Basis Functions

Neural Network
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Regression

regression models based on linear combinations of 

fixed basis functions

Radial Basis Functions find f such that

Introduction
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RBF NN

Architecture of RBF NN
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Outputs

For the case of Gaussian functions

RBF NN

𝑦𝑘 =

𝑗=1

𝑀

𝑤𝑘𝑗𝜙𝑗 𝐱 + 𝑤𝑘0

𝜙𝑗 𝐱 = 𝑒𝑥𝑝 −
𝑥 − 𝜇𝑗

2

2𝜎𝑗
2
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Result

Best approximation - in the set of approximating 

functions there is one function which has minimum 

approximating errore for any given function to be 

approsimated (Girosi and Poggio, 1990)

This property is not shared by MLP

RBF NN
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Basis functions 

Unsupervised learning (e.g., clustering)

Network mapping

Matrix notation

RBF NN training

𝑦𝑘(𝐱) =

𝑗=0

𝑀

𝑤𝑘𝑗𝜙𝑗 𝐱

𝑦𝑘(𝐱) = 𝐖𝚽



M
L 
–
 R

B
F
 N

N

7

Sum-of-squares error

Differentiating with respect wkj and setting the 

derivative to zero

Matrix notation

RBF NN training

𝐸 =
1

2


𝑛



𝑘

𝑦𝑘 𝐱𝑛 − 𝑡𝑘
𝑛 2



𝑛

𝑦𝑘 𝐱𝑛 − 𝑡𝑘
𝑛 𝜙𝑗

𝑛 = 0

Φ𝑇Φ 𝐖𝑇 = ΦT𝐓
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Providing the matrix is non-singular we may invert

Pseudo-inverse 

Pseudoinverse property

If the matrix         is not singular equation does not have a 
unique solution

In practical, use a SVD (Singular Value Decomposition) 
methodology

RBF NN training

𝐖𝑇 = 𝚽∤𝐓

𝚽∤ = 𝚽𝑻𝚽
−𝟏
𝚽𝑻

𝚽∤𝚽 = 𝐈

𝚽𝑇𝚽
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Multi-Layer Neural Networks

all units are heaviside

Lippmann 1987; Lonstaff and Cross 1987

Single layer of weights

Hyperplane decision boundary

Two layer of weights 

Decision boundary which sorround a signle convex region of the 

input space 

Three layer of weights 

Can generate arbitrary decision regisons, non-convex and 

disjoint 

Properties and Depth
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Multi-Layer Neural Networks

all units are sigmoidal 

Two layer of weights 

Can approximate arbitrarly well any functional (one-one or many-
one) continuos mapping from one finite-dimensional space to 

another, provided the number M of hidden units is sufficiently large 

Universal Approximatin Theorem (Hornik et al., 1989; Cybenko, 

1989) – Feedforward Net with linear output layer and at least one 
hidden layer with «squashing» activation function (e.g., logistic) can 
approximate any Borel measurable function from one-finite 

dimensional space to another provided the number M of hidden 
units is sufficiently large

Corollary (Classification) – Networks with sigmoidal non-linearities 
and two layers of weights can approximate any decision boundary 

to arbitrary accuracy (universal non-linear discriminant functions)

Three layer of weights 

Can approximate, to arbitrary accuracy, any smooth mapping

Properties and Depth
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RBF NN

Best approximation - in the set of approximating 

functions there is one function which has minimum 

approximating error for any given function to be 

approsimated (Girosi and Poggio, 1990)

This property is not shared by MLP

Properties and Depth
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Feedforward NN layer may be infeasibly large 

and may fail to learn and generalize correctly 

(Barron, 1993)

Functions representable with a deep rectifier net 

can require an exponential number of hidden units 

with a shallow (one hidden layer) network 

(Montufar et al., 2014)

Representation learning point 

Better generalization (empirically)   

Properties and Depth
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Properties and Depth
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Properties and Depth
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