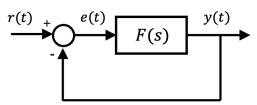

Industrial Automation – November 19th, 2024

Student:_____ ID:____


1. For the closed-loop control system shown in figure,

where

$$G(s) = \frac{20}{s^2 + 22s + 40},$$

- a. design a digital control K(z) by emulation of a continuous control design (i.e. by computing the discrete equivalent using Tustin's method) with a sampling time T = 0.08 sec, in order to satisfy the following requirements:
 - i. $e_{\infty}=0.1$ w.r.t. a ramp reference signal $r(t)=\frac{1}{2}t\cdot 1(t)$;
 - ii. y(t) with overshoot to a step reference signal r(t) less than 15%;
 - iii. settling time $t_{s5\%} \le 1$ sec.
- b. discuss the action to be implemented for reducing the effect of high-frequency noise n (i.e., $n(t) = 0.1 \sin(\omega t)$, with $\omega \in [70, 90] \text{ rad/s}$).
- 2. For the closed-loop control system show in figure,

where the open loop function is defined by

F(s) =
$$\frac{\rho(s + \frac{3}{2})}{s(s^2 + 2s + 10)}$$

draw the root locus and discuss the stability of the closed-loop control system for $\rho > 0$.

Time available: 2 hours