

Course of "Automatic Control Systems" 2023/24

Problems

Prof. Francesco Montefusco

Department of Economics, Law, Cybersecurity, and Sports Sciences

Università degli Studi di Napoli Parthenope

francesco.montefusco@uniparthenope.it

Team code: mfs9zfr

Compute the analytic expression of the step response of the following LTI systems:

•
$$G_1(s) = \frac{s+10}{s^2+6s+5}$$
; $G_2(s) = \frac{s+20}{s^2+s+1}$; $G_3(s) = \frac{-3(s-2)}{(s^2+4s+3)}$;
• $G_4(s) = \frac{s+14}{s^2+10s+30}$; $G_5(s) = \frac{s+24}{s^2+3s+45}$; $G_6(s) = \frac{s+15}{s^2+9s+20}$.

Plot the step response for the different LTI systems

Problem 1.b

Compute the transfer function of the following LTI system:

$$\dot{x} = \begin{pmatrix} 0 & 1 \\ a & -1 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u ,$$
$$y = (1 \quad 0)x$$

♦ Discuss the stability by varying $a \in (-\infty, +\infty)$.
♦ Plot the step response for the LTI system with a = -4.

Problem 1.c

Study the frequency response of the following LTI systems by drawing the asymptotic Bode diagrams:

•
$$G_1(s) = \frac{s}{s^2 + 6s + 5}$$

•
$$G_2(s) = \frac{s}{s^2+s+1}$$

•
$$G_3(s) = \frac{20(s+0.1)}{(s^2+21s+20)}$$

•
$$G_4(s) = \frac{10(s+3)}{(s+1/3)(s+9)}$$

•
$$G_5(s) = \frac{10(s+3)}{s(s+1/3)(s+9)}$$

4

Problem 2 - Controller design

Stability

Robust stability

Steady-state performances

Transient performances

Problem 2 – Example 1

Design K(s) in order to achieve the following requirements:

- $e_{\infty r} \leq 10\%$ for a reference signal $r(t) = r_0 1(t)$ with $r_0 = 1$
- Overshoot $s \leq 30\%$
- Settling time $t_{s5\%} \leq 1s$

For the devised controller, evaluate the frequency range of the reference signal that the control systems is capable of tracking with an $e_{\infty,r} < 0.1$

See *problem_2_ex1.m* file included in *Matlab and Simulink code* folder for the solution

Problem 2 – Example 2

Design K(s) in order to achieve the following requirements:

- $e_{\infty} = 0$ for a disturbance signal $d(t) = d_0 1(t t_0)$
- Overshoot $s \leq 30\%$
- Settling time $t_{s5\%} \le 2s$

For the devised controller, evaluate the effect of multifrequency noise n(t) in the range [50 100] rad/s on the system output y(t).

See *problem_2_ex2.m* file included in *Matlab and Simulink code* folder for the solution.

Problem 2 – Example 3

- 1. Devise a controller K(s) with the aim to satisfy the following requirements:
 - $e_{\infty,r} < 10\%$ for a reference signal $r(t) = r_0 1(t)$ with $r_0 = 1$.
 - overshoot $s \leq 30\%$.
- 2. Compute the gain and phase margins of the open loop function for K(s) devised at 1).
- 3. Evaluate the frequency range of the reference signal that the control systems is capable of tracking with an $e_{\infty,r} < 0.1$.
- 4. Plot the resulting step response of the closed loop system.