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Solution - Automatic Control Systems – June 11th, 2024  
 

Exercise 1 
a. Compute the analytic expression of the step response of the LTI system 

described by the following transfer function: 

𝐺(𝑠) = !(#$%&)
($!%($%&!)

 

Solution: 

𝑌(𝑠) = 𝐺(𝑠)𝑈(𝑠) =
2(5𝑠 + 1)

(𝑠! + 8𝑠 + 12)
1
𝑠

 

By partial fraction decomposition, 

𝑌(𝑠) = 𝐺(𝑠)𝑈(𝑠) =
2(5𝑠 + 1)

(𝑠! + 8𝑠 + 12)
1
𝑠
=

2(5𝑠 + 1)
(𝑠 + 6)(𝑠 + 2)

1
𝑠
=
𝐴
𝑠
+

𝐵
𝑠 + 2

+
𝐶

𝑠 + 6
 

and by applying residual method, 

𝐴 = lim
"→$

𝑠 𝑌(𝑠) = lim
"→$

𝑠
2(5𝑠 + 1)

(𝑠 + 6)(𝑠 + 2)
1
𝑠
=
1
6

 

𝐵 = lim
"→%!

(𝑠 + 2) 𝑌(𝑠) = lim
"→%!

(𝑠 + 2)
2(5𝑠 + 1)

(𝑠 + 6)(𝑠 + 2)
1
𝑠
=
9
4

 

𝐶 = lim
"→%&

(𝑠 + 6) 𝑌(𝑠) = lim
"→%&

(𝑠 + 6)
2(5𝑠 + 1)

(𝑠 + 6)(𝑠 + 2)
1
𝑠
= −

29
12

 

By Laplace anti-transformation, we achieve the analytic expression of y(t): 

𝒚(𝒕) = 9
𝟏
𝟔
+
𝟗
𝟒
𝒆%𝟐𝒕 −

𝟐𝟗
𝟏𝟐

𝒆%𝟔𝒕@ 𝟏(𝒕). 
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MATLAB code to verify the computation: 
% use the residue function to verify the fractional decomposition 
% define the coefficients of the numerator of Y(s), Y(s)=N(s)/D(s), i.e. 
% N(s)= 10*s+2; 
num=[10 2]; 
% define the coefficients of the denominator of Y(s), i.e., 
% D(s)=s^3+8*s^2+12*s 
den=[1 8 12 0]; 
[r,p,k]=residue(num,den) 
r = 
   -2.4167 %  equal to C, r(1) corresponds to the residual of p(1), i.e. -6 
    2.2500 %  equal to B, r(2) corresponds to the residual of p(2), i.e. -2 
    0.1667 %  equal to A, r(3) corresponds to the residual of p(3), i.e. 0 
p = 
    -6 
    -2 
     0 
k = 
     [] 
 

% define a symbolic variable p  

syms p 

% define Y(p) 

Y_p=2*(5*p+1)/(p^2+8*p+12)/p; 

% compute y(t) by using ilaplace function (inverse Laplace transform) 

y_t=ilaplace(Y_p) 

y_t = 

(9*exp(-2*t))/4 - (29*exp(-6*t))/12 + 1/6 
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b. draw the qualitative step response 

Solution: 

Compute the parameters for drawing the step response: 

 

�̇�(0) = 	 lim
"→*+

𝑠! 𝑌(𝑠) = 10 

𝑦+ = lim
,→*+

	𝑦(𝑡) = 	 lim
"→$

𝑠 𝑌(𝑠) = 𝐴 = 1/6 

Compute the maximum time constant, 𝝉𝒎𝒂𝒙, and the settling time: 

⎩
⎨

⎧ 𝝉𝟏 = −
𝟏
𝒑𝟏

= −
𝟏
−𝟐 = 𝟎. 𝟓

𝝉𝟐 = −
𝟏
𝒑𝟐

= −
𝟏
−𝟔

≅ 𝟎. 𝟏𝟕
⇒ 𝝉𝒎𝒂𝒙 = 𝟎. 𝟓 ⇒ 𝒕𝒔𝟓% = 𝟑𝝉𝒎𝒂𝒙 = 𝟏. 𝟓	𝐬𝐞𝐜 

 
Note the presence of the zero (𝑠 = 𝑧) = −1/5) at low frequency that determines an overshoot 

during the transient (but without oscillations). 

By using MATLAB, we can achieve the behavior of y (define the system transfer function by the 

function tf and then use the command step for achieving the plot – see figure below) and verify 

how the estimated parameters (computed above) are close to the real ones (from the MATLAB 

plot).  

% define the tf s variable 
s=tf('s'); 
% define the tf of the LTI system 
Gs=2*(5*s+1)/(s^2+8*s+12); 
% plot the step response 
figure 
step(Gs) 
grid on 
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 5 

 
Exercise 2 
 

For the closed loop system shown in figure, 

 
where 

𝑮(𝒔) =
𝟏𝟎

𝒔(𝒔 + 𝟏𝟎)	, 

  
a. devise K(s) in order to satisfy the following requirements: 

 
i. e∞= 0 w.r.t. a step disturbance 𝒅(𝒕) = 𝒅𝟎𝟏(𝒕 − 𝒕𝟎); 

ii. y(t) without overshoot to a step reference input r(t); 

iii. settling time ts5% ≤ 0.3 sec. 

b. draw the qualitative response y(t) of the devised closed loop system to 

the following inputs:  

𝒓(𝒕) = 𝟏(𝒕); 

𝒅(𝒕) = 𝒅𝟎 ∙ 𝟏(𝒕 − 𝒕𝟎)	with 𝒅𝟎 = 𝟎. 𝟐  and 𝒕𝟎 = 𝟏 sec. 

Solution: 
 
Assume the controller is in the form 

𝑲(𝒔) = 𝑲𝟏(𝒔)𝑲𝟐(𝒔), 
where K1(s) takes into account the static requirement (i.) and K2(s) the transient requirements (ii. 

and iii.). 

i. In order to satisfy the first requirement, i. e∞= 0 w.r.t. a step disturbance 𝑑(𝑡) = 𝑑+1(𝑡 − 𝑡+), 

i.e the complete rejection of a disturbance signal of order k=0 (𝑑(𝑡) is a step signal, then k=0), 
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it is necessary an open loop function, F(s)=K(s)G(s), of type 1 (i.e., k+1) (F(s) should have 

one integrator, i.e. one pole in the origin).  

Note that G(s) contains one integrator (i.e. one pole in the origin), then, it is not necessary 

to include an additional integrator in K(s), 𝑲𝟏 can be in the form  

𝑲𝟏(𝒔) = 𝒌𝟎,  

and the open loop function as 

𝑭𝟏(𝒔) = 𝑲𝟏(𝒔)𝑮(𝒔) = 𝒌𝟎
𝟏𝟎

𝒔(𝒔 + 𝟏𝟎) = 𝒌𝟎
𝟏𝟎

𝟏𝟎 K 𝒔𝟏𝟎 + 𝟏L 𝒔
= 𝒌𝟎

𝟏

𝒔 K 𝒔𝟏𝟎 + 𝟏L
. 

ii. Regarding the second requirement (ii. no overshoot), the phase margin  𝝋𝒎 of the open loop 

function F(s) must be 𝝋𝒎 > 𝟔𝟎°. 

Then, the closed loop system can be approximated by a first order system in the form   

𝑻𝒂(𝒔) =
𝟏

𝟏 + 𝒔𝝉, 

with the time constant t as 

𝝉 =
𝟏
𝝎𝒄
, 

where 𝝎𝒄 is the crossing frequency of the open loop system. 

iii. The third requirement (iii. settling time ts5% ≤ 0.3 sec) determines the constraint on 𝝎𝒄: 

𝒕𝒔𝟓% = 𝟑𝝉 =
𝟑
𝝎𝒄

≤
𝟑
𝟏𝟎 ⟹ 𝝎𝒄 ≥ 𝟏𝟎	𝐫𝐚𝐝/𝐬𝐞𝐜. 

Therefore, the transfer function 𝑭(𝒔) should have a crossing frequency 𝝎𝒄 ≥ 𝟏𝟎	𝐫𝐚𝐝/𝐬𝐞𝐜  

and a phase margin 𝝋𝒎>𝟔𝟎°. 

 

By checking the Bode diagrams of 𝑭𝟏(𝒔) = 𝒌𝟎
𝟏

𝒔. 𝒔𝟏𝟎/𝟏0
, with 𝒌𝟎 = 𝟏,  we get that |𝑭(𝒋𝟏𝟎)|𝒅𝑩 =

−𝟐𝟑𝐝𝐁 (-20 dB for the asymptotic Bode diagrams) and 𝐚𝐫𝐠[𝑭(𝒋𝟏𝟎)\ = −𝟏𝟑𝟓°, as shown in the 

figure below. 
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Therefore, we require a magnitude amplification of about 𝟐𝟎	𝐝𝐁	for 𝑭𝟏	to have a crossing 

frequency 𝝎𝒄 ≅ 𝟏𝟎 rad/sec and a phase increase > 𝟏𝟓° to have 𝝋𝒎 > 𝟔𝟎°	(𝝋𝒎 = 𝝅 −

_𝐚𝐫𝐠[𝑭(𝒋𝟏𝟎)\_). 

A possible solution could be obtained  

• by setting 𝒌𝟎 = 𝟏𝟎  (in order to get the desired magnitude amplification and have 𝝎𝒄 ≅

𝟏𝟎 rad/sec) 

• by adding a zero in 𝒔 = −𝟏𝟎 (resulting in a phase increase of 𝟒𝟓° in 𝝎 = 𝟏𝟎 rad/sec 

⟹𝝋𝒎 ≅ 𝟗𝟎; 	note	that	this	zero	(𝒔 = −𝟏𝟎)	cancels	the	pole	of	𝑮(𝒔)). 

Then, the controller is in the form	

𝑲(𝒔) = 𝑲𝟏(𝒔)𝑲𝟐(𝒔) = 𝟏𝟎 K
𝒔
𝟏𝟎 + 𝟏L. 

Note that such a controller is not feasible, therefore we add a pole at high frequency, for example 

in 𝒔 = −𝟏𝟎𝟎, leading to the following controller: 
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𝑲(𝒔) = 𝑲𝟏(𝒔)𝑲𝟐(𝒔) = 𝟏𝟎
K 𝒔𝟏𝟎 + 𝟏L

K 𝒔
𝟏𝟎𝟎 + 𝟏L

. 

Then, the resulting open loop function is given by 

𝑭(𝒔) = 𝑲(𝒔)𝑮(𝒔) = 𝟏𝟎
K 𝒔𝟏𝟎 + 𝟏L

K 𝒔
𝟏𝟎𝟎 + 𝟏L

𝟏

𝒔 K 𝒔𝟏𝟎 + 𝟏L
 

and the below figure shows the relative Bode diagrams.  
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By using MATLAB, it is possible to verify the performance of the devised control system and 

simulate the response to the following inputs (as required at point .b) (see the below figure):  
𝒓(𝒕) = 𝟏(𝒕); 

𝒅(𝒕) = 𝒅𝟎 ∙ 𝟏(𝒕 − 𝒕𝟎)	with 𝒅𝟎 = 𝟎. 𝟐  and 𝒕𝟎 = 𝟏 sec. 

 

0 0.5 1 1.5 2
time [sec]

0

0.2

0.4

0.6

0.8

1

1.2

r
d
y


