Automatic Control Systems - May 9, 2024

Student: \qquad ID: \qquad

1. Given the LTI system defined by the transfer function $G(s)$,

$$
G(s)=\frac{2(s+20)}{\left(s^{2}+2 s+10\right)}
$$

a. calculate the analytic expression of the forced response to a step input of unitary amplitude (i.e., step response);
b. draw the qualitative step response.
2. For the closed loop system shown in figure,

where

$$
G(s)=\frac{10}{\left(s^{2}+11 s+10\right)}
$$

a. devise $K(s)$ in order to satisfy the following requirements:
i. $\quad e_{\infty}=0$ in the presence of both reference, $r(t)$, and disturbance, $d(t)$, step input signals;
ii. $\quad y(t)$ with overshoot $s \leq 15 \%$ to a step reference input $r(t)$;
iii. settling time $t_{55} \% \leq 1 \mathrm{~s}$;
b. draw the qualitative response $y(t)$ of the devised closed loop system to the following inputs:
$r(t)=1(t) ;$
$d(t)=0.3 \cdot 1(t-6)$.

