
Automatic Control Systems – October 15th, 2024

Student:_____ ID:_____

1. Given the LTI system defined by the transfer function G(s),

$$G(s) = \frac{(1-10s)}{(s^2+3s+2)},$$

- a. calculate the analytic expression of the forced response to a step input of unitary amplitude (i.e., step response);
- b. draw the qualitative step response.
- 2. For the closed loop system shown in figure,

where

$$G(s) = \frac{7}{s^2 + 9s + 14},$$

- a. design K(s) in order to satisfy the following requirements:
 - i. $e_{\infty} = 0$ w.r.t. a step disturbance signal d(t);
 - ii. y(t) with overshoot to a step reference signal r(t) less than 20%;
 - iii. settling time $t_{s5\%} \le 1$ sec.
- b. for the designed controller, evaluate the effect of multifrequency noise n(t) in the range $[50 +\infty]$ rad/s on the system output y(t).

Time available: 2 hours