
Automatic Control Systems – July 3rd, 2024

Student:______ ID:_____

1. Given the LTI system defined by the transfer function G(s),

$$G(s) = \frac{(s+15)}{(s^2+3s+25)},$$

- a. calculate the analytic expression of the forced response to a step input of unitary amplitude (i.e., step response);
- b. draw the qualitative step response.
- 2. For the closed loop system shown in figure,

where

$$G(s) = \frac{0.8}{(s^2 + 4.4s + 1.6)},$$

- a. design K(s) in order to satisfy the following requirements:
 - i. $e_{\infty} \le 0.1$ w.r.t. a step reference input $r(t) = 2 \cdot 1(t)$;
 - ii. y(t) with overshoot to a step reference input r(t) less than 15%;
 - iii. settling time $t_{s5\%} \le 0.6$ sec.
- b. draw the qualitative response y(t) of the devised closed loop system to the following inputs:

$$r(t) = 1(t);$$

$$d(t) = d_0 1(t - t_0)$$
 with $d_0 = 0.2$ and $t_0 = 2$ sec.

Time available: 2 hours