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Introduction

¥ Feed-forward Neural Network

B Multi-Layer Perceptron

» Learning

B error backpropagation
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General feed-forward topology
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MLP architecture
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Architecture

hidden units

L0 B B B B B B
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MLP architecture
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Neurons' activation

¢ Combination of input variables (first hidden level)
= Zw( )rz —l—u

¥ Activation of the hidden unit
zj = h(a;)

¥ Combiantion of hidden units

ak—Zuk ~]+w()
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Neurons' activation

¢ Output unit

yr = o(ag) o(a) =

¥ Overall function network

D
(X, W) =0 (Zu@)h (Z (4 )1'1 —I—u'( )> —I—u(2)>

1=1
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Neurons' activation

» Absorbing bias

M D

.. _ )} (1)

(X, W) =0 wkj ) w;
j=0 i=0

¥ MLP are general parametric non-linear functions
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Function approximation




Classification problem
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Error function

¥ Minimize the error function

Zuy X W) =t

E(w)
¥ Geometrical wiev T

ML — MLP
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Parameters optimization

¥ Gradient of the error function
VE(w) =0

¥ Gradient descent optimization

w™ ) — w() _ '7’]VE(W(T))

» Sequencial

ML — MLP
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Number of layers

» Decision boundary by

r Continuous input variables

p Units with threshold activation functions

¢ Single layer of weights

hyperplane

ML — MLP
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Number of layers

¥ Two layers of weights

Convex region of the input
space

AND of hyperplanes

ML — MLP

K%
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Two-layer net

ML — MLP
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4

¥ Hidden units
e Divides the input space with a hyperplane

z=0andz=1

» Logical AND
e M hidden neurons and bias = -M

® output unit has 1 only if all the hidden units have oputput
I
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Number of layers

¥ Three layers of weights

Non—-convex and disjolnt regions

OR of hyperplanes
AND of hyperplanes

ML — MLP

A | 3
7S

15



Three-layer nets

ML — MLP

2

¥ Result

B Three-layer of weights can generate arbitrary decision
regions, which may be non-convex and disjoint

(Lippmann, 1987)

output

Topolgy of NN
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Three-layer nets

ML — MLP
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» Input space

k¥ divided into a fine grid of hypercubes labelled as classes C;
or C2

¥ First hidden layer

B One group of fisrt-layer units is assign to each hypercube
which corresponding to C,

¢ Second hidden layer
B units generate AND

r» Output
¥ The output unit has a bias = -1 for computing OR
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Relaxing AND in two-layers NN
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Two-layers of weights

ML — MLP
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Decision boundary which cannot be produced
by a network having two layers of threshold
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Sigmoidal units

r Logistic sigmoid activation function

1
1+e™@

g(a) =

1.0 Logistic sigmoid
activation
8(a) function
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tanh units

¥ tanh activation function

ea _ e—a
a) = tanh(a) =
g(a) (@) ===
1.0 .
E tanh
g(a) | activation
1 function
5 3 ¢ ) IS | ORI

e —
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Three-layer nets

ML — MLP

2

¥ Result

B Three-layer of weights and sigmoidal activation
functions can approximate, to arbitrary accuracy, any
smooth mapping (Lepedes and Farber, 1988)

output

Topology of NN
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Three-layer nets

» Input space

r two dimensions

¥ First hidden layer

ML — MLP

PR v .;.
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z=g(wW'x+wp)
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Three-layer nets

¥ First hidden layer

 Orientation of the sigmoid is determined by the
diretion of w and location by —w,

p Linear cobinations of functions

ML — MLP

Two functions d functions
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Three-layer nets

¢ third hidden layer

® sigmoid function isolate the central hiimn

Bump function

(d)

¢ Intivitive idea

B Any reasonsble function can be approximated to
arbitrary accuracy by a linear superposition of
sufficientrly large number of localized ((tbump» functions

ML — MLP
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Two-layer nets

¥ Result

e Two-layer nets can approximate arbitrarily well any
functional (one-one or many-one) continuous mapping
from one finite-dimensional space to another, provided
a number M of hidden units is sufficiently large
(universal approximation)

ML — MLP
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ML — MLP
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Two-layer nets

» Input

E X; and x,

¢ Output

E Y(Xl ' X2)
» Approximation by Fourier decomposition

y(xq,x7) = 2 Ags(xq1)cos(sxy)
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Two-layer nets

ML — MLP
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» Fourier decomposition

y(e,x2) % ) ) Agcos(bey)cos(sxy)
s 1
» Trigonometric identity

1 1
cosa :cospf = Ecos(a + B) + Ecos(a —B)

¥ Linear combination
y(r ) = Y Y cos(zg)cos(zl)
S l

Zgl = lx1 + SXo Z.S,‘l = lx1 — SX»
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Two-layer nets

ML — MLP

L ®

¥ cos(z) approximation

N
&) = fo+ ) {fir = fIH(z
=0

f(z)

- Z;)
Heaviside step
function

Approximation of
a function
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Two-layer nets

» cos(z) approximation

N
&) = fot+ ) {fir = [IH(E - 2)
=0

Heaviside step
function

¥ Result

k function y(x;, x,) can be expressed as a linear
combination of step functions whose arguments are
linear combinations of x; and x,

e function y(x,, x,) can be approximated by a two-layer
NN with threshold hidden units (can be approximated
by sigmoidal functions)

ML — MLP
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Approximation example

(@) (b)
E ---------- r ----------
E _“d.
: () (@)
= Examples of functions approximations
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Kolmogorov's theorem

¢ Origins
¥ End of nineteenth century mathematician Hilbert

compiled a list of 23 unsolved problems as a challenge
for twentieth century researchers

e Hilbert’s thirteenth problem

Concerns the issue of whether functions of several variables
can be represented in terms of superpositions of functions of
two variables

¥ Kolmogorov (1957)

Every continuous function of several variables (for a closed
and bounded input domain) can be represented as the
superposition of a small number of functions of one variable

ML — MLP
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Kolmogorov's theorem

output
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