

Machine Learning (part II)

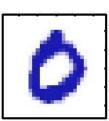
Polynomial Curve fitting

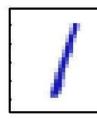
Angelo Ciaramella

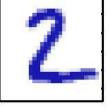
Introduction

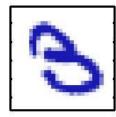
Pattern recognition

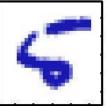
- is concerned with the automatic discovery of regularities in data
- e.g., recognizing handwritten digits
 - goal is to build a machine that will take such a vector x as input and that will produce the identity of the digit 0, . . . , 9 as the output

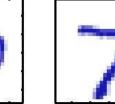












Data

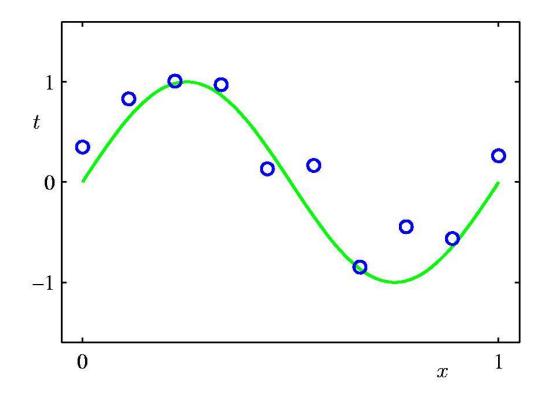
Training set

$$\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$$

Target vector

 $\{t_1,\ldots,t_N\}$

- The result of running the machine learning algorithm can be expressed as a function y(x)
 - Preprocessing
 - Feature extraction
 - Training (or learning) phase
 - Test set
 - Generalization



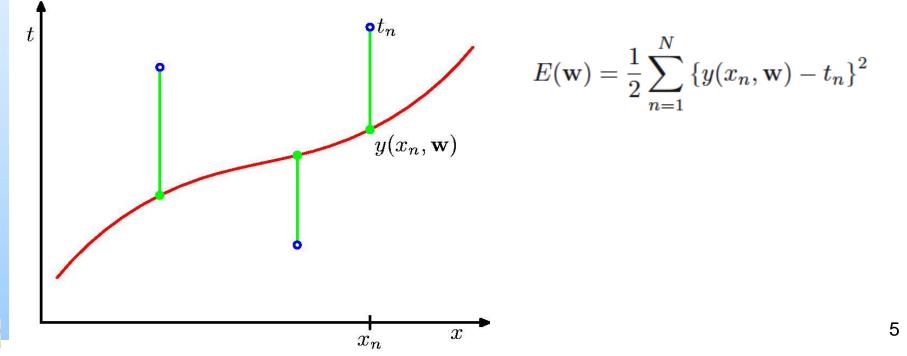
Plot of a training data set of N = 10 points, shown as blue circles, each comprising an observation of the input variable x along with the corresponding target variable t. The green curve shows the function $sin(2\pi x)$ used to generate the data. Our goal is to predict the value of t for some new value of x, without knowledge of the green curve.

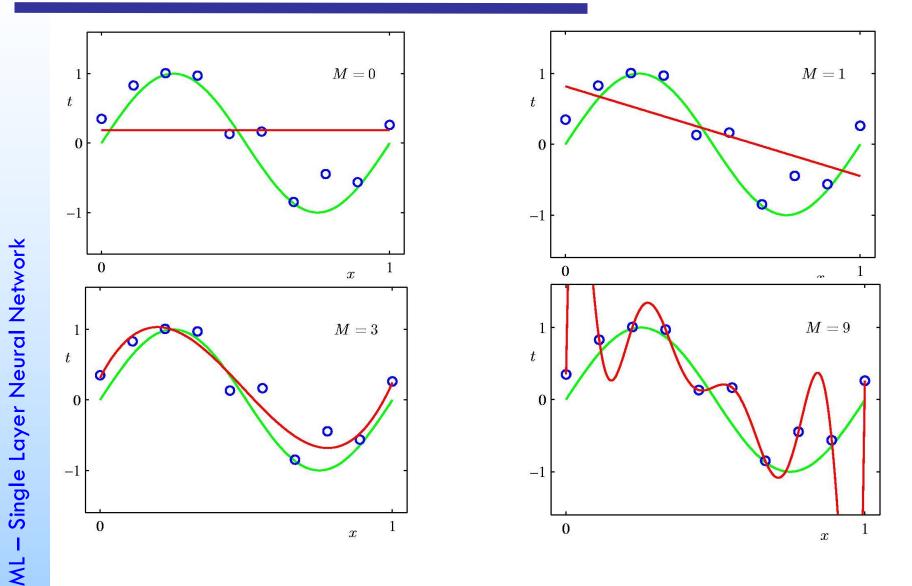
Fitting by polynomial function

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^M w_j x^j$$

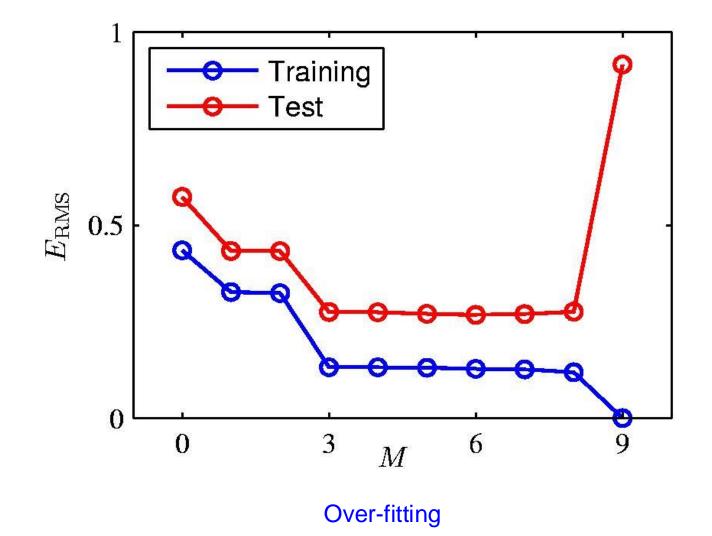
y(x,w) is a nonlinear function of x, it is a linear function of the coefficients w

Error function to minimize

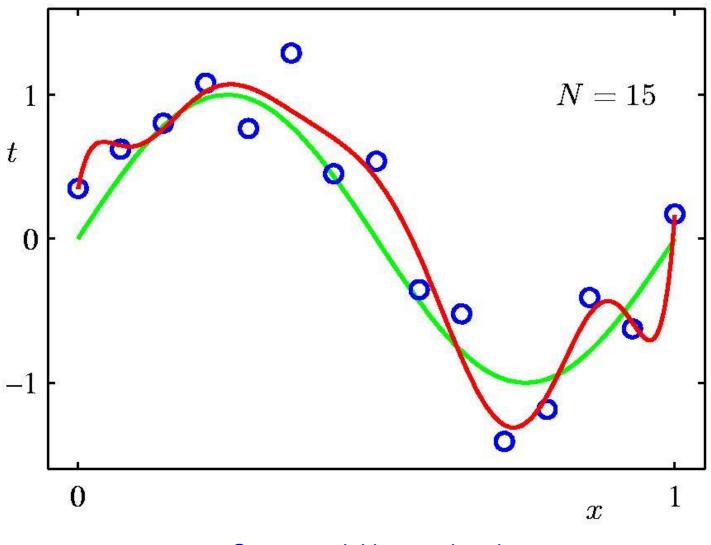




Order of the polynomial

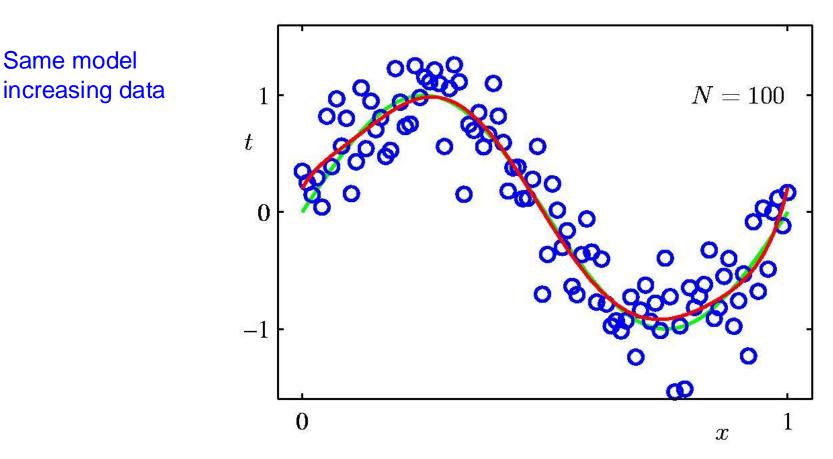


9th Order Polynomial



9th Order Polynomial

Same model

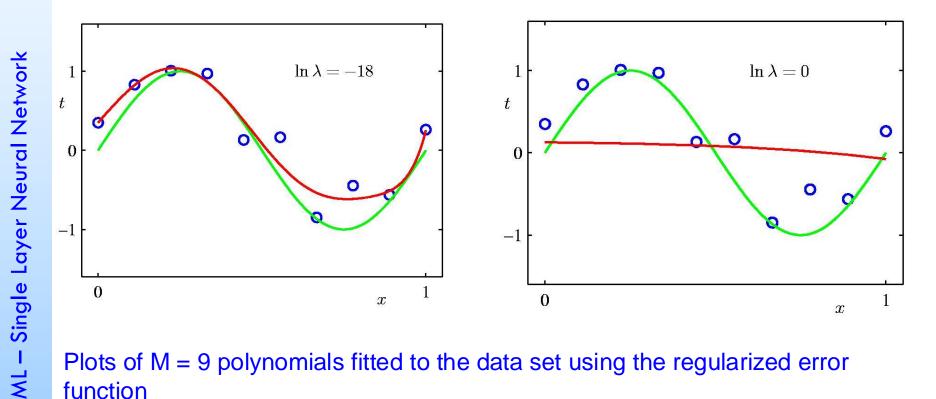


One rough heuristic that is sometimes advocated is that the number of data points should be no less than some multiple (say 5 or 10) of the number of adaptive parameters in the model.

9

Regularization

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

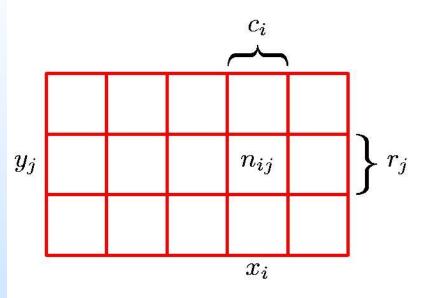


Plots of M = 9 polynomials fitted to the data set using the regularized error function

	$\ln\lambda=-\infty$	$\ln\lambda=-18$	$\ln\lambda=0$
w_0^\star	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^\star	-5321.83	-0.77	-0.06
w_3^\star	48568.31	-31.97	-0.05
w_4^\star	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^\star	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

Table of the coefficients w for M = 9 polynomials with various values for the regularization parameter λ . Note that $\ln \lambda = -\infty$ corresponds to a model with no regularization. As the value of λ increases, the typical magnitude of the coefficients gets smaller.

Probability theory



Marginal Probability

$$p(X = x_i) = \frac{c_i}{N}.$$

Joint Probability

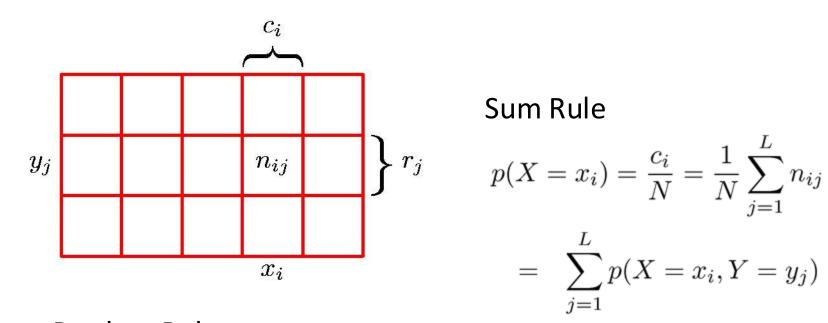
$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

Conditional Probability

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$

Contraction of the

Probability theory

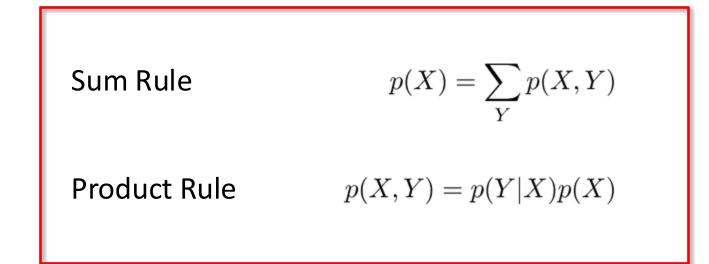


Product Rule

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \cdot \frac{c_i}{N}$$
$$= p(Y = y_j | X = x_i) p(X = x_i)$$

13

Probability theory



Bayes' theorem

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

$$p(X) = \sum_{Y} p(X|Y)p(Y)$$

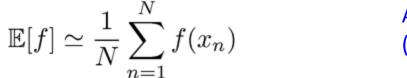
posterior \propto likelihood \times prior

 $\mathbb{E}[f] = \sum p(x)f(x)$

 $\mathbb{E}[f] = \int p(x)f(x) \,\mathrm{d}x$

$$\mathbb{E}_x[f|y] = \sum_x p(x|y)f(x)$$

Conditional Expectation (discrete)



Approximate Expectation (discrete and continuous)

Variances and convariances

$$\operatorname{var}[f] = \mathbb{E}\left[\left(f(x) - \mathbb{E}[f(x)]\right)^2\right] = \mathbb{E}[f(x)^2] - \mathbb{E}[f(x)]^2$$

Variance

$$cov[x,y] = \mathbb{E}_{x,y} [\{x - \mathbb{E}[x]\} \{y - \mathbb{E}[y]\}]$$
$$= \mathbb{E}_{x,y} [xy] - \mathbb{E}[x] \mathbb{E}[y]$$

$$\begin{aligned} \operatorname{cov}[\mathbf{x}, \mathbf{y}] &= & \mathbb{E}_{\mathbf{x}, \mathbf{y}} \left[\{ \mathbf{x} - \mathbb{E}[\mathbf{x}] \} \{ \mathbf{y}^{\mathrm{T}} - \mathbb{E}[\mathbf{y}^{\mathrm{T}}] \} \right] \\ &= & \mathbb{E}_{\mathbf{x}, \mathbf{y}}[\mathbf{x} \mathbf{y}^{\mathrm{T}}] - \mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{y}^{\mathrm{T}}] \end{aligned}$$

Covariance

The Gaussian distribution

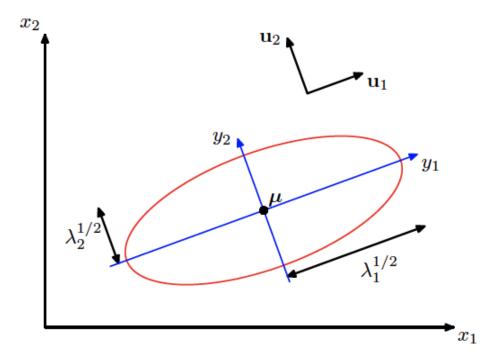
$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

 $\mathcal{N}(x|\mu,\sigma^2)$ Single variable x **Properties** $\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) \, \mathrm{d}x = 1$ ML – Single Layer Neural Network 2σ $\mathcal{N}(x|\mu,\sigma^2) > 0$ $\mathbb{E}[x] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) \, x \, \mathrm{d}x = \mu$ x $\hat{\mu}$ $\mathbb{E}[x^2] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu,\sigma^2) x^2 \,\mathrm{d}x = \mu^2 + \sigma^2$ $\operatorname{var}[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 = \sigma^2$

The multivariate Gaussian

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$
Mahalanobis distance

The multivariate Gaussian



Elliptical surface of constant probability density for a Gaussian in a two-dimensional space

