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Introduction

e Pattern recognition

E is concerned with the automatic discovery of
regularities in data

E e.g., recognizing handwritten digits

goal is to build a machine that will take such a vector x as
input and that will produce the identity of the digit0,..., 9
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as the output
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Handwritten Digit Recognition
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Data

¥ Training set

{X1, .« X}

¢ Target vector

{t;, ..., 1}

¢ The result of running the machine learning algorithm can
be expressed as a function y(x)
E Preprocessing
B Feature extraction
B Training (or learning) phase
E Test set

ML — Single Layer Neural Network

B Generalization
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Example: polynomial curve fitting
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Plot of a training data set of N = 10 points, shown as blue circles, each
comprising an observation of the input variable x along with the corresponding
target variable t. The green curve shows the function sin(2mx) used to
generate the data. Our goal is to predict the value of t for some new

value of x, without knowledge of the green curve.

ML — Single Layer Neural Network
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Example: polynomial curve fitting

Fitting by polynomial function

M
y(x,w) = wo + w1 +awex® + .. +wyaM = ijxj
§=0

y(X,w) is a nonlinear function of x, it is a linear function of the
coefficients w

Error function to minimize

ML — Single Layer Neural Network
o]
=
2
|
| =
g
'_-‘_|
=
=
)
I
S
e

©»
 J



Example: polynomial curve fitting

ML — Single Layer Neural Network

Order of the polynomial
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Example: polynomial curve fitting
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Example: polynomial curve fitting
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ML — Single Layer Neural Network

9t Order Polynomial
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Same model increasing data




Example: polynomial curve fitting

9t Order Polynomial

Same model
increasing data 1+
t
0 L
—1F

0 1

One rough heuristic that is sometimes advocated is that the number
of data points should be no less than some multiple (say 5 or 10) of
the number of adaptive parameters in the model.

ML — Single Layer Neural Network
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Example: polynomial curve fitting

Regularization
N

_ S Y
B(w) = 5 3 {yan, w) — ta}? + 5w

n=1

Plots of M = 9 polynomials fitted to the data set using the regularized error
function

ML — Single Layer Neural Network
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Example: polynomial curve fitting

InA\=—-0c0 InA=-18 InA=0
wy 0.35 0.35 0.13
w* 232.37 4.74 -0.05
Wy -5321.83 -0.77 -0.06
wa 48568.31 -31.97 -0.05
N wy -231639.30 -3.89 -0.03
3 wE | 640042.26 55.28 -0.02
k7 wg | -1061800.52 41.32 -0.01
S wr | 1042400.18 -45.95 -0.00
3 wj | -557682.99 -91.53 0.00
s wy | 125201.43 72.68 0.01
O
F
£ Table of the coefficients w for M = 9 polynomials with various values for
",’ the regularization parameter A. Note that In A = —«~ corresponds to a model
g with no regularization. As the value of A increases, the typical magnitude of

the coefficients gets smaller.
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Probability theory
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Marginal Probability
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Probability theory

&)
~
Sum Rule
C; 1 L
9 i }Tj p(X=$1)_ ﬁz_ FZ?’EH
j=1
L
T = Zp(X:miﬁY:yj)
j=1

Product Rule

p(X =x,Y =y;) =

ML — Single Layer Neural Network
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Probability theory

Sum Rule p(X)=> p(X)Y)
Product Rule p(X,Y) =p(Y|X)p(X)

ML — Single Layer Neural Network
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Bayes' theorem

p(X|Y)p(Y)

p(Y[X) = ()

p(X)=> pX|Y)p(Y)
Y

posterior o likelihood x prior

ML — Single Layer Neural Network
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Expectations

Elf] = Y p@) () Blf] = [ pla)f(a)do

E.[fly) = 3 p(aly)f @ ocretey
N Approximate Expectation

E[f] ~ % Z f(zn) (dl?spcrete and coztinuous)
n=1

ML — Single Layer Neural Network
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Variances and convariances

var(f] = E |((z) ~E[f(2)))°] = Elf(2)"] ~E[f @)

Variance

coviz,y] = E;,[{r—E[z]}{y—Elyl}]
= Egy[zy] — Efz]E[y]
covlx,y] = Exy [{x—Ex}H{y —E}y']}]

= Exylxy' | —EXE[}y"]

Covariance

ML — Single Layer Neural Network
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The Gaussian distribution

1 1
N(i"wrgz) - (2m02)1/2 CxXp {_252 (z _‘“’)2}

N (z|p, 0?) Single variable x
Properties

A /WN(m\#aJE) de = 1

N(z|p, 0%) >0

. Elx] = / N (z|p,0%) zdz = p

T

o]
E[z?] = / N (z|p,0°) 2° do = p® + o2

ML — Single Layer Neural Network

var[z| = E[2?] — E[z]? = 0°
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The multivariate Gaussian

1 1
N(Xllu": E) — (ZTT)DXE |Z|1f2 exp {_

Mahalanobis distance

L2

ML — Single Layer Neural Network
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The multivariate Gaussian
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Elliptical surface of constant probability density for a Gaussian
In a two-dimensional space

ML — Single Layer Neural Network
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