
Robotics Lab - Lecture Notes

Jonathan Cacace

May 2, 2021

ii

Contents

1 Chapter 1 - Robot Operating System 3
1.0.1 History of ROS . 3
1.0.2 ROS Distributions . 4
1.0.3 Robot Operating System 4

2 Robotics programming technologies 15
2.1 Linux Operating System . 15

2.1.1 Install Linux . 16
2.1.2 Basic Linux commands 16
2.1.3 Basic Linux concepts 18

2.2 Introduction to C++ programming 21
2.2.1 Compilation using make 26

2.3 git . 31

3 Starting with ROS programming (Part 1) 35
3.1 Environment configuration . 35
3.2 Create a ROS package . 37
3.3 ROS Service . 47

4 Working with ROS actionlib 53
4.0.1 ROS Action messages 61
4.0.2 Additional ROS tools 62

5 Robot Modeling 65
5.0.1 starting with robot modeling 65
5.0.2 RViz with robot model 66

5.1 Robot modeling using URDF 66
5.1.1 Pan-tilt robot model 69
5.1.2 Display Robot Models in RViz 72
5.1.3 Robot modeling using XACRO 80

6 Robot Modeling using xacro 83
6.0.1 xacro format . 83

iii

iv CONTENTS

7 Simulation in robotics 91
7.0.1 Coppelia Sim . 91
7.0.2 Starting with Coppelia Sim 92
7.0.3 CoppeliaSim - ROS interface 93
7.0.4 CoppeliaSim GUI . 93
7.0.5 Programming ROS scene with CoppeliaSim 94
7.0.6 Exercise 7 . 104

8 Gazebo ROS 105
8.0.1 Configure a robotic arm for Gazebo simulation 107
8.0.2 Gazebo plugins . 111
8.0.3 Use the gazebo_ros_control plugin 111
8.0.4 Control a simulated robot using ros_control 112
8.0.5 Interfacing joint state controllers and joint position

controllers to the arm 114
8.0.6 CoppeliaSim vs Gazebo ROS 117

9 Mobile robotics 119
9.1 Creating a robot model for the differential drive mobile robot 120

9.1.1 Simulate differential mobile robot in Gazebo 125
9.1.2 Control the differential drive robot 128

9.2 Gazebo sensor simulation . 131

10 Gazebo plugins 141
10.1 Creating a basic world plugin 142

10.1.1 Model plugin with ROS integration 145

11 KDL 149
11.0.1 Exercise 8 . 153

12 EIGEN libraries 155
12.0.1 Data types . 155

13 ROS Navigation stack 157
13.1 Move base . 159

13.1.1 Localization and mapping 160
13.1.2 Map representation . 164

13.2 Robot localization . 165
13.2.1 AMCL . 166

13.3 navigation using move_base 168

Preface

This document contains the lecture notes for the Robotics Lab class taken
at the University of Naples Federico II for automation engineering master’s
degree during the 2020/21 academic year. This course aims to give an
overview of the fundamental tools and techniques used to program advanced
robotics systems (both industrial and mobile). After a brief introduction of
the technologies commonly used to program robots (e.g. Linux, c++, git),
the Robot Operating System (ROS) framework is introduced and deeply
explored. Simulation software will help the course attendees to implement
and test state-of-art robotic algorithms and their control software.

1

2 CONTENTS

1

Chapter 1 - Robot Operating
System

Robot Operating System (ROS) represents a flexible framework, providing
various tools and libraries to write robotic software. It offers several powerful
features such as message passing, distributing computing, code reusing, and
implementation of state-of-the-art algorithms for robotic applications.

1.0.1 History of ROS

The first version of ROS was release in 2007 by Willow Garage, a robotics
research laboratory located in California. In that year, Willow Garage was
developing PR2 robot (see Fig.1.1), one of the first robots running ROS as
a programming framework.

ROS was born as an open source software and several developers out-
side Willow Garage participated in its development. One of the main rea-
sons motivating the development of ROS was to simplify the role of robotic
programmers. In particular, robotic applications are typically composed of
similar parts of software. The most common problem of robotics at the time
was that they spent too much time to re-implement the software infrastruc-
ture required to build complex robotics algorithms (basically, drivers to the
sensors and actuators, and communications between different programs in-
side the same robot) and too little time dedicated to building intelligent
robotics programs that were based on that infrastructure. For this reason,
to overcome this problem ROS offers different features, like easy process
communication, code reuse, and software modularity. These features made
ROS particularly suitable for pr2 programming since it was composed of
several heterogeneous sensors (e.g. sonar, lidars, mobile base, etc. . .) and
hardware components. Nowadays ROS is managed by OSRF (Open Source
Robotic Foundation) and it is released under BSD License.

Today, ROS represents the standard for robot programming and it is
already integrated into many robots and used by many universities and

3

4 1. CHAPTER 1 - ROBOT OPERATING SYSTEM

Figure 1.1: PR2 Willow Garage robot. One of the first ROS-enabled robot.

companies.

1.0.2 ROS Distributions

ROS updates are released with new ROS distributions. A new distribution
of ROS is composed of an updated version of its core software and a set of
new/updated ROS packages. ROS follows the same release cycle of Ubuntu
Operating System: a new version of ROS is released every six months. Typ-
ically, for each Ubuntu LTS (Long Time Support) version, an LTS version
of ROS is released. LTS stands for Long Term Support and means that
the released software will be maintained for a long time (5 years in case
of ROS and Ubuntu). The current LTS version of ROS at writing time is
Noetic Ninjemys, and it’s supported by Ubuntu 20.04. The list of recent
ROS distribution is shown in Fig. 1.2.

1.0.3 Robot Operating System

ROS is an open-source, meta-operating system for your robot. It provides
the services you would expect from an operating system, including hard-
ware abstraction, low-level device control, implementation of commonly-
used functionality, message-passing between processes, and package man-
agement. It also provides tools and libraries for building, writing, and run-
ning code across multiple computers. The correct definition for ROS is a
robotic middleware, a software that connects different software components
or applications, as shown in Fig. 1.3.

ROS officially runs on a Unix-based platform. Some experimental ver-
sions have been released for Windows and MacOS. The suggested version

5

Figure 1.2: Recent ROS release.

for Linux is Ubuntu. Before discussing the features and working princi-
ples of ROS, let’s take an overview of the main elements of ROS software.
The computation in ROS is done using a network of processes called ROS
nodes. This computation network along with additional functionalities can
be called computation graph. The main concepts in ROS computation graph
are Nodes, Master, Parameter server, Messages, Topics, Services, and Bags.
Each concept in the graph contributes in different ways. Let’s focus on the
two main elements that are the nodes and the master:

• Nodes: Nodes are the processes that perform computation (the ex-
ecutable). Each ROS node is written using ROS client libraries im-
plementing different ROS functionalities, such as the communication
methods between nodes, which is particularly useful when different
nodes of our robot must exchange information between them. Using
the ROS communication methods, they can communicate with each
other and exchange data. One of the aims of ROS nodes is to build
simple processes rather than a large process with all the functionality
(modularity).

• Master: The ROS Master is a special ROS node that provides the
name registration and lookup to the rest of the nodes. Nodes will
not be able to find each other, exchange messages, or invoke services

6 1. CHAPTER 1 - ROBOT OPERATING SYSTEM

Figure 1.3: Middleware concept.

without a ROS Master. In a distributed system, we should run the
master on one computer, and other remote nodes can find each other
by communicating with this master.

The typical structure of ROS applications is shown in Fig. 1.4. In particular,
in each ROS system, only one Master node can be active. All the other nodes
exchange information between them thanks to the ROS master. In practice,
a ROS node is nothing more than a program written by developers in one of
the supported programming languages. Currently, the supported languages
are C++, Python, Matlab, and Java. The ROS functionalities in all the
programming languages are the same. The ROS Master is much like a DNS

Figure 1.4: ROS application structure.

server, associating unique names and IDs to ROS elements active in our
system. When a new node is launched in the ROS system, it will start
looking for the ROS Master and register the name of the node in it. So, the
ROS Master handles the details of all the nodes currently running on the
ROS system.

Now that the basic idea of ROS has been discussed, let’s start to better
detail its components.

The elements of ROS are summarized in Fig. 1.5 and are described in
the following:

• Plumbing: ROS allows communication between processes (nodes). In
particular, it provides publish-subscribe messaging infrastructure de-

7

signed to support the quick and easy construction of distributed (local
and remote) computing systems. For example, consider that your ap-
plication uses data from a camera, you can use the ROS node deployed
by the vendor of your camera to use the data in your application.

• Tools: ROS provides an extensive set of tools to configure, manage,
debug, visualize data, log and test your robotic application.

• Capabilities: ROS provides a broad collection of libraries that im-
plement useful robot functionalities, like manipulation, control, and
perception. In addition, ROS can be connected to other external soft-
ware like OpenCv, PCL, and so on, thanks to proper wrappers (i.e.
developers can avoid to re-invent the wheel).

• Ecosystem: ROS is supported and improved by a large community,
with a strong focus on integration and documentation. On ROS web-
page: ros.org you can find basic and advanced tutorial to learn how
to program in ROS, while di Q&A website (answers.ros.org) allow
you to directly ask you solution for your own problems (and contains
thousand of question already answered).

Figure 1.5: ROS components.

At this point we are ready to discuss the philosophy of ROS.
The philosophy of ROS is that you have several individual programs

(modules) implemented in your robotic system (these programs can be lo-
cated on the same machine or distributed over the network) and can com-
municate with each other using defined API like ROS messages, services,
and others. Each module can be written in any preferred programming
language supported by ROS (at current stage: C++, Python, Matlab, and
Java). ROS is free software and its core is open source.

Following this philosophy, you can be easily able to design modular soft-
ware with several independent interchangeable modules solely responsible

ros.org
answers.ros.org

8 1. CHAPTER 1 - ROBOT OPERATING SYSTEM

for a small task in the overall software. The advantages the modularity in
your code are many. First of all, debug a small part of code and functionali-
ties is easier. Besides, will be more easily update your software substituting
only the legacy part of your software.

Let’s discuss an example of a simple robotic application programmed
with ROS. We can consider the navigation of a mobile robot that has to
track and follow a given visual target. Such application can be quite com-
plex to program from scratch and can be composed of several modules, as
depicted in Fig. 1.6. In this context, we can classify three application layers.
One responsible to handle robot sensors, like the vision sensor (Camera),
the laser scanner (Lidar) and the Encoders of the wheels. The second layer
instead, is responsible for the robot navigation. To perform such a task,
the robot must be able to Localize itself into the environment, to Map the
obstacles, and to generate a control strategy to accomplish a given task
considering sensor data. Finally, the lower level of your application con-
sists of the integration with the hardware of the robot. Thanks to the large
number of versatile ROS modules the developers can concentrate on the pro-
gramming of the control algorithm. Several sensors are already supported
by ROS, like standard USB cameras, depth sensors (from kinect, asus or
intel), laser scanners, and so on. Similarly, state-of-art mapping and local-
ization algorithms are already deployed to receive the data from the sensors.
One important element of this software architecture is that to exchange in-
formation between multiple modules (plumbing) in ROS a set of standard
messages are used. In this context, another cause for reflection regards the
maintainability of the code. Update or change sensors or pieces of code in
this architecture is very easy since the communication interface between the
modules will remain the same.

Figure 1.6: Example of ROS node in a robotic mobile navigation task.

Now, let’s talk more concretely about ROS software infrastructure start-

9

ing with the message-passing. In the following, two kind of communication
protocols are described: the publish-subscribe and services.

Publish-subscribe

Two processes (ROS Nodes) can communicate in different ways. The first
communication protocol discussed here is an asynchronous communication
protocol based on the publish/subscribe paradigm in which a process streams
a series of data that can be read by one or more processes. This communica-
tion relies on an entity called topic. In particular, each message in ROS is
transported using named buses called topics. When a node sends a message
through a topic, then we can say the node is publishing a topic, while when
a node receives a message through a topic, then we can say that the node
is subscribing to a topic. The publishing node and subscribing node are
not aware of each other’s existence we can even subscribe to a topic that
might not have any publisher. In short, the production of information and
consumption of it is decoupled. The publish/subscribing communication is
described in Fig. 1.7. In this context, the publisher and subscriber nodes
register to the ROS Master. The publisher node creates a topic specifying
its name that must be unique in the ROS system and the type of message
to publish. Differently, the subscriber node requests the data from the topic
as long as it specifies the correct message type. This protocol is useful es-
pecially when a node must share a continuous stream of information. For
example, a node that must grab data from a camera sensor should broadcast
the sequence of the images taken from the sensor using a ROS publisher. In
this case, we are not interested in the of the communication bridge.

ROS Messages

ROS communication relies on a set of standard and custom data structures
called ROS messages. Datatypes are described using a simplified message
description language called ROS messages. These datatype descriptions
can be used to generate source code for the appropriate message type in
different target languages. The message definition consists of a typical data
structure composed of two main types: fields and constants. The field is
split into field types and field names. The field type is the data type of the
transmitting message and the field name is the name of it. The constants
define a constant value in the message file. In the following, an example of a
message definition to share the pose (position and orientation) of the robot
is shown. It is a geometry_msgs::PoseStamped message.

1 std_msgs/Header header
2 uint32 seq
3 time stamp
4 s t r i n g frame_id

10 1. CHAPTER 1 - ROBOT OPERATING SYSTEM

Figure 1.7: ROS publish/subscribe protocol.

5 geometry_msgs/Pose pose
6 geometry_msgs/Point p o s i t i o n
7 f l o a t 6 4 x
8 f l o a t 6 4 y
9 f l o a t 6 4 z

10 geometry_msgs/Quaternion o r i e n t a t i o n
11 f l o a t 6 4 x
12 f l o a t 6 4 y
13 f l o a t 6 4 z
14 f l o a t 6 4 w

This example represents the definition of structured data to boradcast. The
first part of the message is present in several ROS messages and represents an
header containing information about the publishing time of the message and
its reference frame (i.e. the fixed or dynamic reference frame concerning the
pose of the object is specified). The rest of the message contains information
about the 6D position of the robot. As you can easily see, the structure of
the message is composed using basic data types (string, float and so on).
Table 1.1 shows some of the built-in field types that we can use in our
message.

11

Figure 1.8: ROS service communication.

Primitive type Serialization C++ Python
bool(1) Unsigned 8-bit int uint8_t(2) bool
int8 Signed 8-bit int int8_t int
uint8 Unsigned 8-bit int uint8_t int (3)
int16 Signed 16-bit int int16_t int
uint16 Unsigned 16-bit int uint16_t int
int32 Signed 32-bit int int32_t int
uint32 Unsigned 32-bit int uint32_t int
int64 Signed 64-bit int int64_t long
uint64 Unsigned 64-bit int uint64_t long
float32 32-bit IEEE float float float
float64 64-bit IEEE float double float
string ascii string(4) std::string string
time secs/nsecs unsigned 32-bit ints ros::Time rospy.Time
duration secs/nsecs signed 32-bit ints rospy.Time ros::Duration rospy.Duration

Table 1.1: Built-in type for ROS messages

ROS Services

ROS also supports asynchronous communication protocol: ROS services.
ROS Services establish a request/response communication between nodes.
One node will send a request and wait until it gets a response from the other.
Similar to the message definitions we have to define the service definition.
A service description language is used to define the ROS service types.

An example of service description format is as follows:

1 #Request message type
2 s t r i n g s t r
3 −−−
4 #Response message type
5 s t r i n g s t r

The first section is the message type of the request that is separated by
− − − and in the next section is the message type of the response. In this
example, both Request and Response are strings. Of course, the definition

12 1. CHAPTER 1 - ROBOT OPERATING SYSTEM

of service could contain a structured ROS message (like the one used for the
pose of the robot) as well. This type of communication protocol should be
used when a node is specialized in doing specific tasks, like some complex
calculations. For example, this node could be responsible to calculate the
inverse of a matrix. In this way, all the other modules of your system
that need to invert a given matrix could directly use this service, without
replicating the inversion operation in their source code.

Visualization

ROS provides different tools to support developers in their work. Among
these tools, Ros Visualization (RViz) is very useful. It is a 3D visualizer
to graphically display the contents of a topic using viualization_markers
messages. RViz can visualize robot models, the environments they work in,
and sensor data directly from ROS topics. Built-in and custom plugins can
be loaded on RViz to add additional functionalities like motion planning or
motion control.

Figure 1.9: ROS Visualization (RViz).

Simulation

Another important feature of ROS is the simulation. In particular, ROS is
strictly integrated with Gazebo simulator http://gazebosim.org/, a multi-
robot simulator for complex indoor and outdoor robotic simulation. In the
Gazebo environment, we can simulate complex robots, robot sensors, and
a variety of 3D objects. Gazebo already has simulation models of popular
robots, sensors, and a variety of 3D objects in their repository. Also, sev-
eral plugins already exist to interact with the simulated using ROS. Using
Gazebo we can simulate the real sensor mounted on our robots receiving
the same stream of data (thanks to the same ROS message definition be-
tween the real and simulated sensors). An example of the Gazebo interface
is shown in Fig. 1.10, where a wheeled mobile robot is simulated. A huge
amount of robotic simulators today exist. Differently, almost all of them

http://gazebosim.org/

13

Figure 1.10: Gazebo ROS simulator.

can be integrated with ROS. Among them, we can refer to CoppeliaSim and
Webots.

Summary

In this chapter, we introduced Robot Operating System detailing its history
and the motivation that brought to its development. The main element of
the ROS computation graph have been discussed: the ROS master node
and the executable nodes. Finally, two communication protocols allowing
ROS nodes to exchange messages each other have been introduced. Beyond
all its benefits, there are some disadvantages in using ROS. In particular,
main issues of ROS concern the its reliability and safety. Firstly, the com-
munication between multiple nodes can be unstable, especially with a big
amount of data or with a distributed robotic system. In addition, the ROS
master will respond to requests from any device on the network (or host)
that can connect to it. Any host on the network can publish or subscribe
topics, list or modify parameters, and so on. If an unauthorized user can
connect to the ROS master, they could leak sensitive information (such as
data from sensors or cameras), or even send commands to move a robot,
which creates both a privacy and a safety risk. These and other issues bring
to the development or ROS 2, the second version of ROS that focus on the
use of ROS in real industrial scenarios.

In the next chapter, an overview of the technologies used to program
robots will be provided. In particular, we will learn the basic usage of a
unix-based operating system, the basic concept of C++ programming and
the compilation, and an overview of version control tools like git.

14 1. CHAPTER 1 - ROBOT OPERATING SYSTEM

2

Robotics programming
technologies

Nowadays, there exist different setup to program robotic systems. Some
of these rely on proprietary languages developed by robot providers, like
KRL and sunrise for kuka industrial robots, or RoboDK for Universal Robots.
However, these languages don’t allow to develop intelligent robotic appli-
cation to perform complex tasks, but they are considered to be implement
cyclical motion in a completely known environment. Differently, sometimes
developers need to program robot considering different high level or low
level prospective. For this reason, to develop advanced robotic applications
in which the robot is able to plan new actions based on the state of its
operative environment, standard programming languages must be used. In
this lesson we mainly considered C++ because is fast and versatile, can be
used both for high level reasoning (geometrical reasoning, image elaboration,
etc . . .) and for low level control. Before to recall some basic concepts on
c++, we briefly discuss some basic concepts and commands used in Linux.

2.1 Linux Operating System

Linux is a family of open source Unix-like operating systems based on the
Linux kernel, an operating system kernel free and open-source, monolithic
and Unix-like kernel, released on 1991. Typically different versions of Linux
are packaged into distributions. Nowadays, exist hundreds of linux distri-
butions usable on embedded, server and desktop devices. One of the most
popular linux distributions for desktop computers is called Ubuntu. Ubuntu
is an African sub-Saharan term meaning humanity or more specifically it
is philosophy: ’the belief in a universal bond of sharing that connects all
humanity‘ or ’I am because we are‘. Ubuntu is released every six months,
with long-term support (LTS) releases every two years. The most recent
long-term support release at writing time is 20.04 LTS, which is supported

15

16 2. ROBOTICS PROGRAMMING TECHNOLOGIES

until 2023 under public support.
Independently from the distributions, all versions o linux share a list of

commands invokable via the linux console (terminal). Be able to use linux
console for a robotics software developer is fundamental for several reasons.
First of all, typically robot based on Linux OS are not endowed of a graphical
interface or developers joint the robot remotely using the Secure Shell (ssh)
connection. In addition, a list of commands from the command line can be
extremely useful to properly configure the robotic system.

2.1.1 Install Linux

The convenient way to install linux is with multi boot options. This setup
allows to install multiple operating system on the same hard disk. Another
way to use linux is relying on Virtual Machine. This solution in our case
presents some disadvantages, mainly because of the requirements needed by
the simulation software.

2.1.2 Basic Linux commands

In this section, a list of recurrent important linux commands are reported.

• pwd: when you first open the terminal, you are in the home directory
of your user. To know which directory you are in, you can use the
“pwd” command. It gives us the absolute path, which means the path
that starts from the root.

• ls: use the ls command to know what files are in the directory you are
in. You can see all the hidden files by using the command ls -a.

• cd: Use the cd command to go to a directory. For example, if you
are in the home folder, and you want to go to the downloads folder,
then you can type in cd Downloads. Remember, this command is case
sensitive, and you have to type in the name of the folder exactly as it
is. To go back from a folder to the folder before that, you can type
“cd ..” . The two dots represent back.

• mkdir & rmdir: Use the mkdir command when you need to create a
folder or a directory. To delete a directory containing files, use rmdir.

• rm: Use the rm command to delete files and directories. Use "rm -r"
to delete just the directory. It deletes both the folder and the files it
contains when using only the rm command.

• touch: the touch command is used to create a file. It can be anything,
from an empty txt file to an empty zip file. For example, “touch
new.txt”.

2.1. LINUX OPERATING SYSTEM 17

• cp: Use the cp command to copy files through the command line. It
takes two arguments: The first is the location of the file to be copied,
the second is where to copy.

• mv: Use the mv command to move files through the command line.
We can also use the mv command to rename a file. For example, if we
want to rename the file “text” to “new”, we can use “mv text new”. It
takes the two arguments, just like the cp command.

• locate: the locate command is used to locate a file in a Linux sys-
tem. This command is useful when you don’t know where a file is
saved or the actual name of the file. Using the -i argument with the
command helps to ignore the case (it doesn’t matter if it is upper-
case or lowercase). So, if you want a file that has the word “hello”, it
gives the list of all the files in your Linux system containing the word
hello when you type in locate -i hello. If you remember two words,
you can separate them using an asterisk (*). For example, to locate
a file containing the words hello and this, you can use the command
locate -i *hello*this. In order to have an update representation of the
filesystem and be able to find even the newest files contained in your
machine you should insert the following command:

$ sudo updatedb

The first time this command could take a bit of time.

• echo: the echo command helps us move some data, usually text into
a file. For example, if you want to create a new text file or add to an
already made text file, you just need to type in, echo hello, my name
is alok » new.txt. You do not need to separate the spaces by using the
backward slash here, because we put in two triangular brackets when
we finish what we need to write.

• cat: use the cat command to display the contents of a file. It is usually
used to easily view programs.

• nano: nano is a text editors already installed in your Linux command
line. The nano command is a good text editor that denotes keywords
with color and can recognize most languages. It is one of the simplest
text editor usable via command line.

• sudo: a widely used command in the Linux command line, sudo stands
for SuperUser Do. So, if you want any command to be done with
administrative or root privileges, you can use the sudo command. For
example, if you want to edit a file like viz. alsa-base.conf, which needs
root permissions, you can use the command: sudo nano alsa-base.conf.

18 2. ROBOTICS PROGRAMMING TECHNOLOGIES

• chmod: use chmod to make a file executable and to change the permis-
sions granted to it in Linux. Imagine you have a python code named
numbers.py in your computer. You’ll need to run python numbers.py
every time you need to run it. Instead of that, when you make it exe-
cutable, you’ll just need to run numbers.py in the terminal to run the
file. To make a file executable, you can use the command chmod +x
numbers.py in this case. Another situation in which this command
is particularly useful is when your application needs to access to USB
devices. In such case the device should have executable privileges.

• ping: use ping to check your connection to a server.

• You can power off or reboot the computer by using the command sudo
halt and sudo reboot.

• You can use the clear command to clear the terminal if it gets filled
up with too many commands.

2.1.3 Basic Linux concepts

In this subsection we report some basic concepts common to all linux oper-
ating systems.

• Command auto completion: auto completion represents a fundamental
feature of linux console. In particular, TAB key can be used to fill up
in terminal. For example, You just need to type cd Doc and then TAB
and the terminal fills the rest up and makes it cd Documents.

• filesystem: most Linux systems use a standard layout for files so that
system resources and programs can be easily located. This layout
forms a directory tree, which starts at the / directory, also known as
the root directory. Directly underneath / are important subdirectories:
/bin, /etc, /dev, and /usr, among others. These directories in turn
contain other directories which contain system configuration files, pro-
grams, and so on. In particular, each user has a home directory, which
is the directory set aside for that user to store his or her files. A user
has completely control of its user space (/home/user). Differently, for
the higher level of the filesystem the operations must be performed
with the use of superuser privileges (sudo in ubuntu).

• .bashrc: the linux shell is called bash (Bourne Again SHell). It is a
command processor that typically runs in a text window where the user
types commands. Bash can also read and execute commands from a
file, called a shell script. Like all Unix shells, it supports piping, here
documents, command substitution, variables, and control structures
for condition-testing and iteration. When a new interactive linux shell

2.1. LINUX OPERATING SYSTEM 19

is open a series of configuration files are elaborated. In particular, bash
reads and executes /etc/bash.bashrc and then ~/.bashrc. For this
reason, all the system configuration that you want to automatically
load can be placed in the bashrc file. This file is placed in the home
directory of the user. in addition, it is a hidden file (in fact its name
starts with a dot): /home/user/.bashrc.

• Environment variables: in linux based systems environment variables
are a set of dynamic named values, stored within the system that are
used by applications launched in shells. In simple words, an environ-
ment variable is a variable with a name and an associated or a list of
values. Environment variables allow you to customize how the system
works and the behavior of the applications on the system. For exam-
ple, the environment variable can store information about the default
text editor or browser, the path to executable files, or the system lo-
cale and keyboard layout settings. In bash a variable can be set in the
following way:

$ export V=environment

While, to print the content of a variable you should refer to the variable
name using the $ character:

$ echo $V

In the following a list of commands used to handle environment vari-
ables are reported:

$ echo $VARIABLE #To display value of a variable
$ env #Displays all environment variables
$ VARIABLE_NAME=variable_value #Create a new variable
$ unset variable_value #Remove a variable
$ export Variable=value #To set value of an environment variable

• APT: to install new software a convenient way is to use the package
manager. In ubuntu (derived from debian) the package manager is
called APT (Advanced Packaging Tool). APT simplifies the process
of managing software on Unix-like computer systems by automating
the retrieval, configuration and installation of software packages, either
from precompiled files or by compiling source code. In order to install
a new software you should use the following syntax:

$ sudo apt-get install [PACKAGE NAME]

20 2. ROBOTICS PROGRAMMING TECHNOLOGIES

If the package exists in the apt repository, the list of dependencies
of such package will be also automatically installed. If you want to
check if a software is contained in the apt repository you could use the
following command:

$ apt-cache search [PACKAGE NAME]

Otherwise, if you know only initial part of the package you can used
the auto completion.
Other usage modes of apt and apt-get that facilitate updating installed
packages include:

– update is used to resynchronize the package index files from
their sources. The lists of available packages are fetched from
the location(s) specified in /etc/apt/sources.list. For example,
when using a Debian archive, this command retrieves and scans
the Packages.gz files, so that information about new and updated
packages is available.

– upgrade is used to install the newest versions of all packages
currently installed on the system from the sources enumerated
in /etc/apt/sources.list. Packages currently installed with new
versions available are retrieved and upgraded; under no circum-
stances are currently installed packages removed, or packages
not already installed retrieved and installed. New versions of
currently installed packages that cannot be upgraded without
changing the install status of another package will be left at their
current version.

In order to add additional software list to the apt repository you should
edit the files included in /etc/apt directory. In particular, on Ubuntu
and all other Debian based distributions, the apt software reposito-
ries are defined in the /etc/apt/sources.list file or in separate files
under the /etc/apt/sources.list.d/ directory. If you already in-
stalled ROS in your system, you should know that the first instruction
of ROS tutorial is the following:

$ sudo sh -c ’echo "deb http://packages.ros.org/ros/ubuntu
$(lsb_release -sc)
main" > /etc/apt/sources.list.d/ros-latest.list’

This line uses the echo command to create a file called ros-latest.list
filled with the address of the repository of ROS packages. At this point,
the apt command should be able to see the packages contained in the
ROS repository. More information about how to add other repository
to APT will be provided when the installation of ROS is discussed.

2.2. INTRODUCTION TO C++ PROGRAMMING 21

2.2 Introduction to C++ programming

C++ is a general-purpose programming language created as an extension of
the C programming language. One of C++’s strengths is that it can be used
to write programs for nearly any processor. It is a high-level language: when
you write a program in it, the shorthand are sufficiently expressive that you
don’t need to worry about the details of processor instructions. In addition,
C++ does give access to some lower-level functionality than other languages
(e.g. memory addresses). For this reason, C++ can be used both for high
level robot programming (reasoning, planning and so on) and for robot low
level control. The source code of a C++ program is written in a text file.
The process in which a program goes from text files to processor instructions
is depicted in Fig. 2.1. In particular, object files are intermediate files that
represent an incomplete copy of the program: each source file only expresses
a piece of the program, so when it is compiled into an object file, the object
file has some markers indicating which missing pieces it depends on. The
linker takes those object files and the compiled libraries of predefined code
that they rely on, fills in all the gaps, and spits out the final program, which
can then be run by the operating system. The compiler and linker are just
regular programs. The step in the compilation process in which the compiler
reads the file is called parsing. In C++, all these steps are performed ahead
of time, before you start running a program. In some languages, they are
done during the execution process, which takes time. This is one of the
reasons C++ code runs far faster than code in many more recent languages.

1 /∗
2 ∗ F i r s t C++ program that says h e l l o (h e l l o . cpp)
3 ∗/
4

5 #inc lude <iostream> //IO ope ra t i on s
6 us ing namespace std ;
7

8 // Program entry po int
9 i n t main () {

10 // Say He l lo
11 cout << " he l l o , world " << endl ;
12 // Terminate main ()

Figure 2.1: C++ compilation process

22 2. ROBOTICS PROGRAMMING TECHNOLOGIES

13 re turn 0 ;
14 } // End o f main func t i on

The classical form of a single process C++ program is reported in the above
algorithm. This is nothing more than a simple program that prints the string
"hello, world". In such code, cout function print out some piece of text to the
screen, while to specify e certain context the namespace keyword is used: In
C++, identifiers can be defined within a context called a namespace. When
we want to access an identifier defined in a namespace, we tell the compiler
to look for it in that namespace using the scope resolution operator (::).
Here, we’re telling the compiler to look for cout in the std namespace, in
which many standard C++ identifiers are defined. If we do this, we can
omit the std::prefix when writing cout.

C++ syntax is very similar to C and other compiled languages. In
this section, we highlight some useful functionalities of C++ using external
libraries.

Pointers

After declared a variable in C++, the computer associates its name with
a particular location in memory where the value of the variable is stored.
When in the code such variable is referred, the computer firstly look up
the address the correspond to the variable name, then go to the location in
memory to retrieve the value it contains.

Mainly, C++ allows us to perform these steps independently:

• &x evaluates to the address of x in memory

• *(&x)takes the address of x and dereferences it – it retrieves the value
at that location in memory. *(&x)thus evaluates to the same thing as
x.

Pointers allow us to manipulate data much more flexibly; manipulating the
memory addresses of data can be more efficient than manipulating the data
itself. In particular in C++ pointers are particularly useful to:

• Pass-by-reference variables is more efficient.

• Manipulate complex data structures efficiently, even if their data is
scattered in different memory locations.

• Return multiple values from a single function.

To declare a pointer variable named ptr that points to an integer variable
named x:

1 i n t ∗ptr = &x ;

2.2. INTRODUCTION TO C++ PROGRAMMING 23

int *ptr declares the pointer to an integer value, which we are initial-
izing to the address of x. We can have pointers to values of any type.

The following block of code shows a simple example in which pointers
are used to pass variables by reference.

1 void squareByPtr (i n t ∗numPtr){
2 ∗numPtr= ∗numPtr∗∗numPtr ;
3 }
4

5 i n t main () {
6 i n t x=5;
7 squareByPtr(&x) ;
8 std : : cout << x << std : : endl ; // Pr in t s 25
9 }

The usage of the * and & operators with pointers/references can be
confusing. The * operator is used in two different ways: when declaring a
pointer, * is placed before the variable name to indicate that the variable
being declared is a pointer - say, a pointer to an int or char, not an int or
char value. Then, when using a pointer that has been set to point to some
value, *is placed before the pointer name to dereference it, to access or set
the value it points to. A similar distinction exists for &, which can be used
either to indicate a reference datatype (int &x;), or to take the address of
a variable (int *ptr=&x;).

Smart pointers (Shared pointers)

A smart pointer represents a class of objects aiming at simplify the usage of
pointers. In particular, smart pointers prevent most situations of memory
leaks by making the memory deallocation automatic and providing feature
like automatic memory management or bounds checking. Such features are
intended to reduce bugs caused by the misuse of pointers, while retaining
efficiency.

In C++, a smart pointer is implemented as a template class that mim-
ics, by means of operator overloading, the behaviors of a traditional (raw)
pointer, (e.g. dereferencing, assignment) while providing additional memory
management features.

Among different features of smart pointers, in this document we are
interested in the std::shared_ptr. C++11 introduces std::shared_ptr,
defined in the header <memory>. A shared_ptr is a container for a raw
pointer. It maintains reference counting ownership of its contained pointer
in cooperation with all copies of the shared_ptr. An object referenced by
the contained raw pointer will be destroyed when and only when all copies
of the shared_ptr have been destroyed.

1 // A l l o c a t e s 1 i n t e g e r and i n i t i a l i z e i t with value 5 .

24 2. ROBOTICS PROGRAMMING TECHNOLOGIES

2 std : : shared_ptr<int> p0 (new in t (5)) ;
3 //Valid , a l l o c a t e s 5 i n t e g e r s .
4 std : : shared_ptr<in t [] > p1 (new in t [5]) ;
5 //Both now own the memory .
6 std : : shared_ptr<in t [] > p2 = p1 ;
7 //Memory s t i l l e x i s t s , due to p2 .
8 p1 . r e s e t () ;
9 // De l e t e s the memory , s i n c e no one e l s e owns the memory .

10 p2 . r e s e t () ;
One important feature of shared_ptr is that multiple threads can safely
simultaneously access different shared_ptr that point to the same object.
In particular, shared_ptr is considered when multiple owners should access
to the same object in memory. A shared_ptr object effectively holds a
pointer to the resource that it owns or holds a null pointer. A resource can
be owned by more than one shared_ptr object; when the last shared_ptr
object that owns a particular resource is destroyed, the resource is freed.

Classes

A class represents a user-defined data type which groups together related
pieces of information. If you consider a geometric vector, a vector consists
of 2 points: a start and a finish, each point itself has an x and y coordinate.
We can create the following class to represent different type of vectors:

1 c l a s s Vector {
2 pr i va t e :
3 double xStart ;
4 double xEnd ;
5 double yStart ;
6 double yEnd ;
7 } ;
Of course, similar results can be obtained using a simple data structure. To
improve the class functionalities we should implement some methods in the
vector class. Some functions are closely associated with a particular class,
like the calculation of the norm of a vector:

1 c l a s s Vector {
2 pub l i c :
3 f l o a t get_norm () ;
4 pr i va t e :
5 double xStart ;
6 double xEnd ;
7 double yStart ;
8 double yEnd ;
9 } ;

2.2. INTRODUCTION TO C++ PROGRAMMING 25

In addition, a class need a constructor: a method that is called when an
instance is created. In our case, we can consider to initialize the member of
the class (the points of the vector) when an instance of the class is created:

1 c l a s s Vector {
2 pub l i c :
3 Vector (f l o a t xstart_ , f l o a t xend_ ,
4 f l o a t ystart_ , f l o a t yend_) ;
5 f l o a t get_norm () ;
6 pr i va t e :
7 double xStart ;
8 double xEnd ;
9 double yStart ;

10 double yEnd ;
11 } ;

In this way, to initialize a new vector and get its norm, we must implement
the functions of its class:

1 Vector : : Vector (f l o a t xstart_ , f l o a t xend_ ,
2 f l o a t ystart_ , f l o a t yend_) {
3 xStart = xstart_ ;
4 xEnd = xend_ ;
5 yStart = ystart_ ;
6 yEnd = yend_ ;
7 }
8

9

10 f l o a t Vector : : get_norm () {
11 re turn sq r t (pow((xEnd − xStart) , 2) + pow((yEnd − yStart) , 2))
12 }
13

14

15 i n t main () {
16 Vector v (0 , 0 , 2 , 2) ;
17 std : : cout << v . get_norm () << std : : endl ;
18 re turn 0 ;
19 }

As for the class modifiers, we can choose three different type for the class
members:

• public: members are accessible from outside the class

• private: members cannot be accessed (or viewed) from outside the
class

26 2. ROBOTICS PROGRAMMING TECHNOLOGIES

• protected: members cannot be accessed from outside the class, how-
ever, they can be accessed in inherited classes.

Data hiding is a software development technique specifically used in object-
oriented programming to hide internal object details (data members). Data
hiding ensures exclusive data access to class members and protects object
integrity by preventing unintended or intended changes. To implement data
hiding you can follow two simple rules: make all the data members private
and create public setter and getter functions for each data member in such
a way that the set function set the value of data member and get function
get the value of data member.

1 void Vector : : set_xend (f l o a t xend) {
2 xEnd = xend ;
3 }
4

5 f l o a t Vector : : get_xend () {
6 re turn xEnd ;
7 }

2.2.1 Compilation using make

To generate executable files we need to compile one or more source files. One
of the most common way is to use the GNU make program and (under linux)
the GCC compiler. GCC, formerly for "GNU C Compiler", has grown over
times to support many languages such as C (gcc), C++ (g++), Objective-C,
Objective-C++, Java (gcj), etc. . . . It is now referred to as "GNU Compiler
Collection". In this section we will discuss different tools to compile C++
programs. In particular, we introduce the command line tool of gcc to
compile programs, then we discuss the make utility used to automatize the
compilation process.

GCC

The GNU C and C++ compiler are called gcc and g++, respectively. Con-
sidering the following block of code:

1 // h e l l o . c
2 #inc lude <s td i o . h>
3

4 i n t main () {
5 p r i n t f (" Hel lo , world ! \ n ") ;
6 re turn 0 ;
7 }

To compile the hello.c:

2.2. INTRODUCTION TO C++ PROGRAMMING 27

$ gcc hello.c

This command generates an executable that by default under linux OS is
called a.out. This file can be executed from unix console using the following
commands:

$ chmod a+x a.out
$./a.out

To specify the output filename, use -o option:

$ gcc -o hello.exe hello.c

Consider that gcc and g++ share the same syntax, so to compile a C++
program, just used g++ instead of gcc.

In case your program has multiple source files, like f1.cpp and f2.ccp,
you could compile them in a single command:

$ g++ -o program f1.cpp f2.cpp

with the option -c you can compile multiple different object source files
separately into object file, and link them together in the later stage. In this
case, changes in one file does not require re-compilation of the other files:

$ g++ -c f1.cpp
$ g++ -c f2.cpp
$ g++ -o program f1.o f2.o

An important element of program compilation is represented by the shared
and static libraries that can be used in your source code. In particular, a
library is a collection of pre-compiled object files that can be linked into
your programs via the linker. Examples are the system functions such as
printf() and sqrt(). There are two types of external libraries: static library
and shared library.

• A static library has file extension of ".a" (archive file). When your
program is linked against a static library, the machine code of external
functions used in your program is copied into the executable.

• A shared library has file extension of ".so" (shared objects). When your
program is linked against a shared library, only a small table is created
in the executable. Before the executable starts running, the operating
system loads the machine code needed for the external functions - a
process known as dynamic linking. Dynamic linking makes executable
files smaller and saves disk space, because one copy of a library can be
shared between multiple programs. The shared library codes can be
upgraded without the need to recompile your program.

28 2. ROBOTICS PROGRAMMING TECHNOLOGIES

When compiling the program, the compiler needs the header files to compile
the source codes; the linker needs the libraries to resolve external references
from other object files or libraries. This could be a tedious step because
the compiler and linker will not find the headers/libraries unless you set
the appropriate options. For each of the headers used in your source (via
#include directives), the compiler searches the so-called include-paths for
these headers. The include-paths are specified via -Idir option (or environ-
ment variable CPATH). Since the header’s filename is known (e.g., iostream.h,
stdio.h), the compiler only needs the directories.

As for the linker, it searches the so-called library-paths for libraries
needed to link the program into an executable. The library-path is speci-
fied via -Ldir option (or environment variable LIBRARY_PATH). In addition,
you also have to specify the library name. In Unix, the library libxxx.a is
specified via -lxxx option. In this context, the linker needs to know both
the directories as well as the library names. Hence, two options need to be
specified. To summarize, GCC uses the following environment variables:

• PATH: For searching the executables and run-time shared libraries (.so).

• CPATH: For searching the include-paths for headers. It is searched after
paths specified in -I<dir> options. C_INCLUDE_PATH and CPLUS_INCLUDE_PATH
can be used to specify C and C++ headers if the particular language
was indicated in pre-processing.

• LIBRARY_PATH: For searching library-paths for link libraries. It is
searched after paths specified in -L<dir> options.

Make

The make utility automates building process of executable from source code.
make uses a so-called makefile, which contains rules on how to generate
executable. Let’s see a first example to build the hello.c program into
executable using make utility.

Create the following file named "makefile" (without any file extension),
which contains rules to build the executable, and save in the same directory
as the source file.

1 a l l : h e l l o
2

3 h e l l o : h e l l o . o
4 gcc −o h e l l o h e l l o . o
5

6 h e l l o . o : h e l l o . c
7 gcc −c h e l l o . c
8

9 c l ean :

2.2. INTRODUCTION TO C++ PROGRAMMING 29

10 rm h e l l o . o h e l l o

To compile the program, run the make command in the same directory of
the makefile.

$ make

makefile is typically used when you have a complex compilation structure for
your program (multiple sources, libraries and so on). For this reason, several
variables can be used to simply the content of the makefile. Automatic
variables are set by make after a rule is matched. There include:

• $@: the target filename.

• $*: the target filename without the file extension.

• $<: the first prerequisite filename.

• $^: the filenames of all the prerequisites, separated by spaces, discard
duplicates.

• $+: similar to $^, but includes duplicates.

• $?: the names of all prerequisites that are newer than the target,
separated by spaces.

The previous makefile can be re-written as:

1 a l l : h e l l o
2

3 # $@ matches the t a r g e t ;
4 # $< matches the f i r s t dependent
5 h e l l o : h e l l o . o
6 gcc −o $@ $<
7

8 h e l l o . o : h e l l o . c
9 gcc −c $<

10

11 c l ean :
12 rm h e l l o . o h e l l o

CMake

Using make to compile complex and multi-platform projects could be not
an easy task. For this reason, a generator of build system is often used to
simplify the work of a software developer. The most famous generator of
build-systems and also the one adopted by ROS is called CMake. CMake is
a cross-platform free and open-source software tool for managing the build

30 2. ROBOTICS PROGRAMMING TECHNOLOGIES

process of software using a compiler-independent method. It is used in con-
junction with native build environments such as Make, Qt Creator, Ninja,
Apple’s Xcode, and Microsoft Visual Studio.

The build process with CMake takes place in two stages. Simple configu-
ration files placed in each source directory (called CMakeLists.txt files) are
used to generate standard build files (e.g., makefiles) which are used in the
usual way. Another nice feature of CMake is that it generates a cache file that
is designed to be used with a graphical editor. For example, when CMake
runs, it locates include files, libraries, and executables, and may encounter
optional build directives. This information is gathered into the cache, which
may be changed by the user prior to the generation of the native build files.

Considering hello.c source file of the previous example, to compile it
in CMake you should create a txt file named CMakeLists.txt:

1 # Spec i f y the minimum ve r s i on f o r CMake
2

3 cmake_minimum_required (VERSION 2 . 8)
4

5 # Project ’ s name
6

7 p ro j e c t (h e l l o)
8 # Set the output f o l d e r where your program w i l l be c rea ted
9 s e t (CMAKE_BINARY_DIR ${CMAKE_SOURCE_DIR}/ bin)

10 s e t (EXECUTABLE_OUTPUT_PATH ${CMAKE_BINARY_DIR})
11 s e t (LIBRARY_OUTPUT_PATH ${CMAKE_BINARY_DIR})
12

13 # The f o l l ow i ng f o l d e r w i l l be inc luded
14 i n c l ud e_d i r e c t o r i e s (" ${PROJECT_SOURCE_DIR}")

In this file we used the following global variables:

• CMAKE_BINARY_DIR: if you are building in-source, this is the same as
CMAKE_SOURCE_DIR, otherwise this is the top level directory of your
build tree

• CMAKE_SOURCE_DIR: this is the directory, from which cmake was started,
i.e. the top level source directory

• EXECUTABLE_OUTPUT_PATH: set this variable to specify a common place
where CMake should put all executable files (instead of CMAKE_CURRENT_BINARY_DIR)

• EXECUTABLE_OUTPUT_PATH: set this variable to specify a common place
where CMake should put all executable files (instead of CMAKE_CURRENT_BINARY_DIR),
for example SET(EXECUTABLE_OUTPUT_PATH ${PROJECT_BINARY_DIR}/bin).
LIBRARY_OUTPUT_PATH: set this variable to specify a common place
where CMake should put all libraries

2.3. GIT 31

• PROJECT_SOURCE_DIR: contains the full path to the root of your project
source directory, i.e. to the nearest directory where CMakeLists.txt
contains the PROJECT() command.

Finally, to compile the source code you should add this final line to your
CMakeLists.txt:

1 add_executable (h e l l o ${PROJECT_SOURCE_DIR}/ h e l l o . c)

Now you are ready to compile the hello.c source file. At this point, you
will have the folder with the following files:

$ ls
$ CMakeLists.txt hello.c

The common way to compile with CMake tools, is to create a temporary
folder in which all the compilation file are put. In this way, you can delete
the temporary compilation file to share the entire folder of your project:

$ mkdir build && cd build
$ cmake ..
$ make

Sometimes, you should need to install custom libraries in your system. This
is particularly useful when you want to use functions and headers in different
source files. In CMake the install command is used. This command gener-
ates installation rules for a project. Rules specified by calls to this command
within a source directory are executed in order during installation.

1 #l i b s
2 add_library (mylib SHARED ${LIB_SRC})
3 #i n s t a l l
4 i n s t a l l (TARGETS mylib DESTINATION /usr / l i b)
5 i n s t a l l (FILES ${LIB_HEADER} DESTINATION /usr / inc lude /mylib)

In this case, after the make command, to perform the install step you should
type the following command:

$ sudo make install

2.3 git

Git is a distributed version-control system for tracking changes in source
code during software development. It is designed for coordinating work
among programmers, but it can be used to track changes in any set of files.
Today, Git is the most widely used modern version control system in the
world.

32 2. ROBOTICS PROGRAMMING TECHNOLOGIES

Version control is a system that records changes to a file or set of files
over time so that you can recall specific versions later. So ideally, we can
place any file in the computer on version control. A Version Control System
(VCS) allows you to revert files back to a previous state, revert the entire
project back to a previous state, review changes made over time, see who
last modified something that might be causing a problem, who introduced
an issue and when, and more. Using a VCS also means that if you screw
things up or lose files, you can generally recover easily. The most famous

Figure 2.2: Git workflow

implementation of Git is github (www.github.com). In this section we intro-
duce the basic concept of Git. First of all, the Remote Repository is where
you send your changes when you want to share them with other people, and
where you get their changes from, while the Development Environment is
what you have on your local machine: the three parts of it are your Work-
ing Directory, the Staging Area and the Local Repository. The workflow
of git among these directories is shown in Fig. 2.2. First of all, what is a
repository? A repository is nothing but a collection of source code. If you
consider a file in your Working Directory, it can be in three possible states.
The following commands are used to manage the workflow:

• git add is a command used to add a file that is in the working direc-
tory to the staging area.

• git commit is a command used to add all files that are staged to the
local repository.

• git push is a command used to add all committed files in the local
repository to the remote repository. So in the remote repository, all
files and changes will be visible to anyone with access to the remote
repository.

www.github.com

2.3. GIT 33

• git fetch is a command used to get files from the remote repository
to the local repository but not into the working directory.

• git merge is a command used to get the files from the local repository
into the working directory.

• git pull is command used to get files from the remote repository
directly into the working directory. It is equivalent to a git fetch and
a git merge .

As for the main commands to start with git, you can follow these commands:

• Create a new repository:

$ git init

• Checkout a repository: create a working copy of a local repository by
running the command

$ git clone /path/to/repository

• You can propose changes (add it to the Index) using:

$ git add <filename> or git add *

• To actually commit these changes use:

$ git commit -m "Commit message"

• Your changes are now in the HEAD of your local working copy. To send
those changes to your remote repository, execute:

$ git push origin master

Change master to whatever branch you want to push your changes to.

• If you have not cloned an existing repository and want to connect your
repository to a remote server, you need to add it with:

$ git remote add origin <server>

• branching: branches are used to develop features isolated from each
other. The master branch is the "default" branch when you create a
repository. Use other branches for development and merge them back
to the master branch upon completion. To create a new branch named
branch and switch to it using:

34 2. ROBOTICS PROGRAMMING TECHNOLOGIES

$ git checkout -b branch

To switch back to master

$ git checkout master

And delete the branch again

$ git branch -d branch

A branch is not available to others unless you push the branch to your
remote repository

$git push origin <branch>

• To update your local repository to the newest commit and fetch and
merge remote changes in your working directory, execute:

$ git pull

while, to merge another branch into your active branch (e.g. master),
use:

$ git merge <branch>

Typically, a repository can be private or public. In the first case the owner
and the developers of the project are the solely ones that can see the project
and download its source code. In this context, you need to authenticate
during the clone operations. This can be done in two different ways: with
https authentication: just inserting user name and password of your account
or using SSH authentication. Using the SSH protocol, you can connect and
authenticate to remote servers and services. After you’ve checked for existing
SSH keys, you can generate a new SSH key to use for authentication, then
add it to the ssh-agent. To configure your GitHub account to use your new
(or existing) SSH key, you’ll also need to add it to your GitHub account.

3

Starting with ROS
programming (Part 1)

In this lesson, we discuss two ROS packages implementing the communica-
tion protocols available in ROS: the publish-subscribe and the service. For
each package, we also show some useful command line tool used in ROS to
handle the execution of ROS nodes.

3.1 Environment configuration

You need to install ROS in your system before to start programming with
it. In our lessons we use ROS Noetic, however similar steps can be follow
to install other ROS distributions.

The first step is the setup your computer to accept software from packages.
ros.org.

$ sudo sh -c ’echo "deb http://packages.ros.org/ros/ubuntu
$(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list’

sudo apt-key adv --keyserver ’hkp://keyserver.ubuntu.com:80’
--recv-key C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654

Then you should update your APT repository:

$ sudo apt-get update

Finally, you are ready to install ROS. There are many different libraries
and tools in ROS. The full version of ROS includes all the packages com-
monly used in robotic programming and can be installed with the following
command:

$ sudo apt install ros-noetic-desktop-full

35

packages.ros.org
packages.ros.org

36 3. STARTING WITH ROS PROGRAMMING (PART 1)

This step will take some time. Moreover, the latter command doesn’t install
all the packages available in ROS. To find additional packages, use:

$ apt-cache search ros-noetic

Now ROS is installed in your system. However, you are not able to used
ROS command yet. In fact, at this point if you try to run a ROS command
like roscd in your linux shell, you will get the following error:

$ Command ’roscd’ not found, did you mean:

$ command ’rosco’ from deb python-rosinstall

$ Try: sudo apt install <deb name>

This happen because the ROS environment is not correctly configured. By
default, ROS in installed in the following directory:

$ /opt/ros/${ROS_VERSION}

To properly load the environment you have to source the setup file included
in the installation directory of ROS.

$ source /opt/ros/noetic/setup.bash

Now you should be able to use the ROS commands. However, with this
setup the user workspace is set to a directory owned by the super user (i.e.
/opt/ros/noetic/share). So, before to continue, you should create your
own workspace in the user space:

$ cd ~
$ mkdir -p ros_ws/src
$ cd ros_ws/src
$ catkin_init_workspace
$ cd ..
$ catkin_make

The catkin_make is the compilation command. Now you have created a
ROS workspace called ros_ws. If you check the content of this directory, it
contains three folders: build, devel and src. In the src directory you must
create or download new ROS packages. If a package is not placed there, it
will not be compiled. The build directory instead contains the compilation
file, while the devel folder contains the compiled libraries.

To set ros_ws workspace as the default workspace you need to source
the setup.bash file contained in the devel folder. To source this file au-
tomatically when a new linux shell is opened, you could be put the source
command bashrc file:

3.2. CREATE A ROS PACKAGE 37

$ echo "source ~/ros_ws/devel/setup.bash" >> ~/.bashrc

To test if everything is properly configure, you could try to enter the roscd
command in a linux shell. If everything is right, this command will move
you in the devel folder of your ROS workspace.

3.2 Create a ROS package
As already stated, all ROS packages, either created from scratch or down-
loaded from other code repositories, must be placed in the src folder of the
ROS workspace, otherwise they can not be recognized by the ROS system
and compiled.

To create a ROS package, switch to the catkin workspace src folder and
create the package, using the following command:

$ catkin_create_pkg package_name [dependency1] [dependency2]

Try to create a simple node implementing the publish/subscribe communi-
cation protocol. Call this package: ros_topic:

$ catkin_create_pkg ros_topic roscpp std_msgs

As dependencies, we specified the following:

• roscpp: This is the C++ implementation of ROS. It is a ROS client
library which provides APIs to C++ developers to make ROS nodes
with ROS topics, services, parameters, and so on. We are including
this dependency because we are going to write a ROS C++ node. Any
ROS package which uses the C++ node must add this dependency.

• std_msgs: This package contains basic ROS primitive data types, such
as integer, float, string, array, and so on. We can directly use these
data types in our nodes without defining a new ROS message.

After ran this command, a new directory appears in your ROS workspace.
A typical structure of an ROS package is shown in Fig. 3.1.

• config: All configuration files that are used in this ROS package are
kept in this folder. This folder is created by the user and it is a common
practice to name the folder config to keep the configuration files in it.

• include/package_name: This folder consists of headers and libraries
that we need to use inside the package.

• script: This folder keeps executable Python scripts. In the block
diagram, we can see two example scripts.

• src: This folder stores the C++ source codes.

38 3. STARTING WITH ROS PROGRAMMING (PART 1)

Figure 3.1: Structure of a typical ROS package

• launch: This folder keeps the launch files that are used to launch one
or more ROS nodes.

• msg: This folder contains custom message definitions.

• srv: This folder contains the services definitions.

• action: This folder contains the action files.

• package.xml: This is the package manifest file of this package. In
particular, this file defines properties about the package such as the
package name, version numbers, authors, maintainers, and dependen-
cies on other catkin packages.

• CMakeLists.txt: This files contains the directives to compile the
package.

After that the ros_topic has been created, you should be able to use the
first ROS command introduced here, the roscd. In particular, roscd com-
mand is used to change the current directory using a package name or a
special location. If we give the argument a package name, it will switch to
that package folder (i.e. ~/ros_ws/devel). Consider that after created or
downloaded a new package in your workspace, you should inform the ROS
system about it, updating the ROS filesystem using the command:

$ rospack profile

Now you can try to reach the ROS package folder using the following com-
mand:

$ roscd ros_topic

3.2. CREATE A ROS PACKAGE 39

If everything is working properly, you will be move in the directory of the
package:

$ ~/ros_ws/src/ros_topic

After that the ROS package has been successfully created, we can start
adding nodes to it. A ROS package can contain multiple ROS nodes. We
will create two nodes, one to publish a topic and one to subscribe to a topic.
Let’s start with the publisher one.

To create a new node in the ros_topic package, move in the src direc-
tory of the package and create an empty source file:

$ roscd ros_topic/src
$ touch ros_publisher.cpp

The aim of this node is to publish an integer value on a topic called /numbers.

1 #inc lude " ro s / ro s . h "
2 #inc lude " std_msgs/ Int32 . h "
3 #inc lude <iostream>
4

5 i n t main (i n t argc , char ∗∗ argv) {
6 ro s : : i n i t (argc , argv , " ros_top ic_publ i sher ") ;
7 ro s : : NodeHandle nh ;
8 ro s : : Pub l i she r topic_pub =
9 nh . adve r t i s e <std_msgs : : Int32 >("/numbers " , 1 0) ;

10 ro s : : Rate ra t e (1 0) ;
11 i n t count = 0 ;
12 whi le (ro s : : ok ()) {
13 std_msgs : : Int32 msg ;
14 msg . data = count++;
15 ROS_INFO("%d " ,msg . data) ;
16 topic_pub . pub l i sh (msg) ;
17 r a t e . s l e e p () ;
18 }
19 re turn 0 ;
20 }

In the above code, we firstly include the header files needed to use ROS api
(roscpp): the ros/ros.h is the main header of ROS, while the std_msgs/Int32.h
is the standard message definition of the integer datatype. In order to ini-
tialize a ROS node with a given name, we used the following code line:

1 ro s : : i n i t (argc , argv , " ros_top ic_publ i sher ") ;

This line is mandatory for all ROS nodes, otherwise will be impossible to
use all ROS api functions. The name provided in the init function should
be unique and will be used by the ROS master to handle it. Each ROS node

40 3. STARTING WITH ROS PROGRAMMING (PART 1)

typically has a NodeHandle, an object used to communicate with the whole
ROS system. To declare it we use the following line of code:

1 ro s : : NodeHandle nh ;

Then, we can create the object representing the topic publisher:

1 ro s : : Pub l i she r topic_pub = nh . adv e r t i s e
2 <std_msgs : : Int32 >("/numbers " , 1 0) ;

This will create a topic publisher and name the topic /numbers with a
message type std_msgs::Int32. The second argument is the buffer size.
It indicates how many messages need to be put in a buffer before sending.
It should be set to high if the data sending rate is high is used to set the
frequency of sending data.

Another important feature of ROS is represented the ros::Rate object.
This object is used to run loops at a desired frequency. Note that the Rate
takes into account the elapsed time between the end of the previous loop
and the new loop. When you create the Rate object you specify also the
desired loop rate (in Hetz). To create an infinite while loop, we exploit
the ros::ok() function, that returns zero when Ctrl+C is pressed. The
message that we want to publish is a std_msgs::Int32, so, after declared it
we fill its data field. How is composed a std_msgs::Int32? If you want to
know how a message is composed, you can used the rosmsg command. The
inbuilt tools called rosmsg is used to get information about ROS messages.
Here are some parameters used along with rosmsg:

$ rosmsg show [message]: This shows the message description
$ rosmsg list: This lists all messages installed in your system
$ rosmsg md5 [message] : This displays md5sum of a message
$ rosmsg package [package_name] : This lists messages
in a package

So, considering our initial aim, to show how is composed the std_msgs::Int32
message, we can use the rosmsg show command. So open a new terminal
and insert the following command:

$ rosmsg show std_msgs/Int32

Output:
$ int32 data

So to fill the contents of std_msgs::Int32 message, you need to refer to the
data field.

To publish the message to the /numbers topic we use the method publish,
who takes as input the message to broadcast on your topic.

3.2. CREATE A ROS PACKAGE 41

Compile and run a ROS node

To compile a ROS package you need to edit its CMakeLists.txt file. In
particular, we have to inform the building tool about what source file must
be compiled and its dependencies. To compile the ROS publisher node, add
the following lines at the end of the CMakeLists.txt:

1 #This w i l l c r e a t e execu tab l e s o f the nodes
2 add_executable (top i c_pub l i she r s r c / ros_pub l i sher . cpp)
3

4 #This w i l l l i n k execu tab l e s to the appropr ia te l i b r a r i e s
5 t a r g e t_ l i n k_ l i b r a r i e s (top i c_pub l i she r ${catkin_LIBRARIES})

At this point, you can use the catkin_make command to build the package.
We can first switch to a workspace:

$ cd ~/ros_ws

Build ros_topic package as follows:

$ catkin_make

Consider that the catkin_make command compiles all the package in your
workspace. Sometimes, you could have draft versions of other package that
bring to compilation errors or unsatisfied dependencies. In this way the
compilation could fail. To compile only one package and not the entire
workspace you can use the DCATKIN_WHITELIST_PACKAGES argument. With
this option, it is possible to set one or more packages enabled to be compiled.

$ catkin_make -DCATKIN_WHITELIST_PACKAGES="pkg1,pkg2,..."

Note that is necessary to revert this configuration to compile other pack-
ages not specified in the WHITELIST. In fact, after set the WHITELIST it will
remain saved in your system configuration, and you can directly execute
the catkin_make command to compile only the packages specified in the
WHITELIST. Differently, to bring again the list to the initial configuration
you can use the following command:

$ catkin_make -DCATKIN_WHITELIST_PACKAGES=""

Now you are ready to run the publisher node. First of all, to execute
ROS nodes you must activate a roscore in your system. To do this, on a
linux terminal, run the following command:

$ roscore

This command runs the ROS master node on your local machine. Consider
that this command locks your terminal, so to run other commands you need
to open other linux shells.

To run the publisher node, you can use the rosrun command:

42 3. STARTING WITH ROS PROGRAMMING (PART 1)

$ rosrun ros_topic topic_publisher

The output on the linux shell shows the INFO about the integer that are going
to be published on /numbers topic. We can use two additionally commands
to debug and understand the working of the nodes: rosnode and rostopic.

$ rosnode info [node_name]: This will print the
information about the node
$ rosnode kill [node_name]: This will kill a
running node
$ rosnode list: This will list the running nodes
$ rosnode machine [machine_name] : This will list
the nodes running on a particular
machine or a list of machines
$ rosnode ping: This will check the connectivity of a node
$ rosnode cleanup: This will purge
the registration of unreachable nodes

In particular, the output of rosnode info /ros_topic_publisher will pro-
vide information about the published and subscribed topics:

Node [/ros_topic_publisher]
Publications:
* /numbers [std_msgs/Int32]
* /rosout [rosgraph_msgs/Log]

Subscriptions: None

Services:
* /ros_topic_publisher/get_loggers
* /ros_topic_publisher/set_logger_level

contacting node http://jcacace-Inspiron-7570:43001/ ...
Pid: 19478
Connections:
* topic: /rosout
* to: /rosout
* direction: outbound
* transport: TCPROS

This is useful to understand the input and output of a node. As for the
rostopic command, it can be used to get information about ROS topics.
Here is the syntax of this command:

$ rostopic bw /topic: This command will display
the bandwidth used by the given topic.

3.2. CREATE A ROS PACKAGE 43

$ rostopic echo /topic: This command will
print the content of the given topic in a human
readable format. Users can use the "-p"
option to print data in a csv format.
$ rostopic find /message_type: This command will
find topics using the given message type.
$ rostopic hz /topic: This command will display
the publishing rate of the given topic.
$ rostopic info /topic: This command will print
information about an active topic.
$ rostopic list: This command will list all active
topics in the ROS system.
$ rostopic pub /topic message_type args: This
command can be used to publish a value to a
topic with a message type.
$ rostopic type /topic: This will display the
message type of the given topic.

We can use these commands on the output of our publisher node. In par-
ticular, check which kind of topics are published by the node:

$ rostopic list

Output:
/numbers
/rosout
/rosout_agg

And check its content:

$ rostopic echo /numbers

Output:
data: 609

data: 610

data: 611

Before to discuss the subscriber node, let’s introduce additional ROS
graphical tools. In the first versions of ROS only few graphical tools were
considered to plot data or display the connections between ROS nodes. In
2012, the first version of ROS including the rqt graphical interface has been
released.

rqt is a software framework that implements the various GUI tools in the
form of plugins. One can run all the existing GUI tools as dockable windows

44 3. STARTING WITH ROS PROGRAMMING (PART 1)

within rqt. The tools can still run in a traditional standalone method, but
rqt makes it easier to manage all the various windows on the screen at one
moment. To start rqt just type this command in your linux shell:

$ rqt

This command will open a new windows, as depicted in Fig. 3.2. In the

Figure 3.2: rqt window.

rqt start window you can load any desired plugin present in your system.
You can also add custom plugins. Try to use the Topic Monitor plugin
to inspect the data published on the /numbers topic. Open the plugin,
and check the checkbox on this topic, as shown in Fig 3.3. As you can

Figure 3.3: Topic monitor plugin.

see, we obtained the same result of rostopic echo command, but in a
simpler/another way.

ROS Subscriber

After ran the publisher node, you can create a subscriber node that use the
data published on /numbers topic.

Let’s now create a new source code file called ros_subscriber.cpp.

$ roscd ros_topic/src
$ touch ros_subscriber.cpp

3.2. CREATE A ROS PACKAGE 45

A sample code to read the std_msgs::Int32 data is here reported.

1 #inc lude " ro s / ro s . h "
2 #inc lude " std_msgs/ Int32 . h "
3 #inc lude <iostream>
4

5 c l a s s ROS_SUB {
6

7 pub l i c :
8 ROS_SUB() ;
9 void topic_cb (std_msgs : : Int32ConstPtr data) ;

10 pr i va t e :
11 ro s : : NodeHandle _nh ;
12 ro s : : Subsc r ibe r _topic_sub ;
13 } ;
14

15 ROS_SUB: :ROS_SUB() {
16 _topic_sub = _nh . sub s c r i b e
17 (" / numbers " , 0 , &ROS_SUB: : topic_cb , t h i s) ;
18

19 }
20

21 void ROS_SUB: : topic_cb (std_msgs : : Int32ConstPtr data) {
22 ROS_INFO(" L i s t en e r : %d " , data−>data) ;
23

24 }
25

26 i n t main (i n t argc , char ∗∗ argv) {
27 ro s : : i n i t (argc , argv , " ro s_subsc r ibe r ") ;
28 ROS_SUB rs ;
29 ro s : : sp in () ;
30 re turn 0 ;
31 }

Differently from the publisher node, in this example we use a class called
ROS_SUB. In the constructor of the class, we declare a subscriber for the
std_msgs::Int32 data:

1 _topic_sub = _nh . sub s c r i b e ("/ numbers " , 0 , &ROS_SUB: : topic_cb , t h i s) ;

In this line of code, we have to specify the name of the topic to read, the
buffer and the callback function that receives the data. When you use
class methods as subscribers, you must specify the class in were the method
belong (&ROS_SUB::topic_cb) but also its context. In this case, we used
this, which means that the subscriber will refer to the class it is part of.
To update ROS topics the ros::spin() function is used. In particular, we

46 3. STARTING WITH ROS PROGRAMMING (PART 1)

have two functions that let all the callbacks get called for your subscriber:
ros::spin() and ros::spinOnce(). The main differences between these
two functions is that the first one is blocking function. The code after the
spin() will never be executed. In addition, it will implement an infinite
loop that makes your program alive over time.

As shown in the previous example, you can now modify the CMakeLists.txt
file to add this new node (executable) and compile it with the catkin_make
command. Now, you can launch both the nodes, the publisher and sub-
scriber. To do this, type the following commands on three different linux
shells:

$ roscore
$ rosrun ros_topic topic_publisher
$ rosrun ros_topic topic_subsciber

Now, you can use also the rostopic command to have more information
about the connection between the publisher and subscriber.

rostopic info /numbers

Output:
Type: std_msgs/Int32

Publishers:
* /ros_topic_publisher (http://jcacace-Inspiron-7570:41703/)

Subscribers:
* /ros_subscriber (http://jcacace-Inspiron-7570:34901/)

This command provide information about the type of the message (std_msgs::Int32),
but also the publisher (ros_topic_publisher) and the subscribers (ros_subscriber)
active in the your ROS system.

Sometimes you just need to publish some data used to test a subscriber
node (or send desired data like commanded velocity of similar). Of course,
in such context implement a ROS node from scratch could be a waste of
time. For this reason, we can directly publish a data using the command
line tool:

$ rostopic pub /numbers std_msgs::Int32 "data: 13" -r 10

This command publishes the number 13 on the topic numbers with a pub-
lishing rate of 10 Hz.

Again, try to use the graphical tools of ROS to obtain the same results of
rostopic pub command. We can use the rqt_publisher plugin of the rqt
interface. In this case, try to directly load this plugin from the command
line.

3.3. ROS SERVICE 47

$ rosrun rqt_publisher rqt_publisher

This command will open the rqt interface with the rqt_publisher plugin.
As shown in Figs. 3.4 and 3.5, from this window you can select and add a
topic to publish, specify its value and publishing rate and finally publish the
desired value.

Figure 3.4: rqt publisher plugin.

Figure 3.5: Publish on /numbers topic using rqt_publisher plugin.

3.3 ROS Service
In this section, we are going to create a new ROS package to implement ROS
servic e protocol. The service nodes we are going to create can send a string
message as a request to the server and the server node will send another
message as a response. Differently from the example of previous section, in
which the ROS publisher used a standard message already present in the
installation of ROS (the std_msgs::Int32), in this case we have to define
the service message exchanged between the client and the server. Let’s start
creating a new ROS package called ros_service

$ roscd && cd ..
$ cd src
$ catkin_create_pkg ros_service roscpp std_msgs
message_generation message_runtime

We add two additionally dependencies for this package, the message_generation
and message_runtime, packages used to handle the building and run-time
usage of custom messages.

48 3. STARTING WITH ROS PROGRAMMING (PART 1)

Before to create the source code of the ROS nodes, let’s add a custom
service message. Create a new folder called srv in the package directory
and add a srv file called service.srv. The definition of this file is as
follows:

string in

string out

In this case, both the Request and Response filed of the service are strings.
To use this service, we need to compile it. For this reason, you have to
uncomment the following lines of the CMakeLists.txt file as shown here:

Generate services in the ’srv’ folder
add_service_files(
FILES
service.srv
)

and

generate_messages(
DEPENDENCIES
std_msgs
)

After making these changes, we can build the package using catkin_make
and using the following command, we can verify the procedure:

$ rossrv show ros_service/service

If we see the same content as we defined in the file, we can confirm it’s
working.

Now, let’s create the service server and client. Move in the src folder of
the ros_service package and create a new source file:

$ roscd ros_service/src
$ touch service_server.cpp

The content of the server is listed below:

1 #inc lude " ro s / ro s . h "
2 #inc lude " r o s_se rv i c e / s e r v i c e . h "
3 #inc lude <iostream>
4 #inc lude <sstream>
5

6 us ing namespace std ;
7

3.3. ROS SERVICE 49

8 bool s e r v i c e_ca l l ba ck
9 (r o s_se rv i c e : : s e r v i c e : : Request &req , r o s_se rv i c e : : s e r v i c e : : Response &re s) {

10 std : : s t r i ng s t r eam ss ;
11 s s << " Received Here " ;
12 r e s . out = s s . s t r () ;
13 ROS_INFO("From Cl i en t [%s] , Server says
14 [%s] " , req . in . c_str () , r e s . out . c_str ()) ;
15 re turn true ;
16 }
17

18 i n t main (i n t argc , char ∗∗ argv) {
19 ro s : : i n i t (argc , argv , " s e r v i c e_s e rv e r ") ;
20 ro s : : NodeHandle n ;
21 ro s : : S e rv i c eSe rv e r s e r v i c e = n . adv e r t i s e S e r v i c e (" s e r v i c e " , s e r v i c e_ca l l ba ck) ;
22 ROS_INFO(" Ready to r e c e i v e from c l i e n t . ") ;
23 ro s : : sp in () ;
24 re turn 0 ;
25 }

The ros_service/service.h header is a generated header, which con-
tains our service definition and we can use this in our code. The server
callback function is executed when a request is received on the server.
The server can receive the request from clients with a message type of
ros_service::service::Request and sends the response in the ros_service
::service::Response type. Finally, in order to offer the service, we need
to include this line of code:

ros::ServiceServer service =
n.advertiseService("service", service_callback);

This code line instantiates a service called service, while the callback for
it is a function called service_callback.

Like in the previous example, start this service and try to handle it using
the commands provided by the ROS framework. Just add the compilation
directives in the CMakeLists.txt file:

1 add_executable (s e r v i c e_s e rv e r s r c / s e r v i c e_s e rv e r . cpp)
2 t a r g e t_ l i n k_ l i b r a r i e s (s e r v i c e_s e rv e r ${catkin_LIBRARIES})

Then, compile with catkin_make command:

$ roscd
$ cd ..
$ catkin_make

Finally, after ran a roscore, start the service:

50 3. STARTING WITH ROS PROGRAMMING (PART 1)

$ roscore
$ rosrun ros_service service_server

At this point, we can check that the service instantiated in this node is
active. Use the following command to inspect the service active in your
ROS system:

$ rosservice list

Output:
/rosout/get_loggers
/rosout/set_logger_level
/service
/service_server/get_loggers
/service_server/set_logger_level

You can also call this service using the following command:

$ rosservice call /service "in_: ’Call’"

out: "Received Here"

The command rosservice call takes into account the name of the service
to call and the list of arguments. In this case, it takes a string.

Let’s now create the service client node.

$ roscd ros_service/src
$ touch service_client.cpp

The following code calls the service declared in the previous example:

1 #inc lude " ro s / ro s . h "
2 #inc lude <iostream>
3 #inc lude " r o s_se rv i c e / s e r v i c e . h "
4 #inc lude <iostream>
5 #inc lude <sstream>
6

7 us ing namespace std ;
8

9 i n t main (i n t argc , char ∗∗ argv) {
10

11 ro s : : i n i t (argc , argv , " s e r v i c e_ c l i e n t ") ;
12 ro s : : NodeHandle n ;
13 ro s : : Rate loop_rate (1 0) ;
14 ro s : : S e r v i c eC l i e n t c l i e n t =
15 n . s e r v i c eC l i e n t <ro s_se rv i c e : : s e r v i c e >(" s e r v i c e ") ;
16 whi le (ro s : : ok ()) {

3.3. ROS SERVICE 51

17 r o s_se rv i c e : : s e r v i c e s rv ;
18 std : : s t r i ng s t r eam ss ;
19 s s << " Sending from Here " ;
20 s rv . r eque s t . in = s s . s t r () ;
21 i f (c l i e n t . c a l l (s rv)) {
22 cout << "From Cl i en t :
23 ["<< srv . r eques t . in << "] ,
24 Server says [" <<
25 s rv . r e sponse . out << "] " << endl ;
26 }
27 e l s e {
28 ROS_ERROR(" Fa i l ed to c a l l s e r v i c e ") ;
29 re turn 1 ;
30 }
31 ro s : : spinOnce () ;
32 loop_rate . s l e e p () ;
33 }
34 re turn 0 ;
35 }

To create a service client of the service type, we can use the following
code line:

1 ro s : : S e r v i c eC l i e n t c l i e n t =
2 n . s e r v i c eC l i e n t <ro s_se rv i c e : : s e r v i c e >(" s e r v i c e ") ;

While, to send the service call to the server we can use the following line:

1 i f (c l i e n t . c a l l (s rv))

This line returns true if the service is successfully called, false otherwise.

Create custom messages

Similarly to the ROS service message (srv), you can create custom mes-
sages. ROS already provides a comprehensive set of messages to handle sev-
eral situation of robotic programming (i.e. sensor_msgs, geometry_msgs,
nav_msgs, etc. . .). However, in some situation could be useful to define your
own ROS messages. The message definitions are stored in a .msg file the
msg folder of your package. Let’s create a custom message in the ros_topic
package:

$ roscd ros_topic
$ mkdir msg && cd msg
$ touch demo.msg

In this message we want to group together a string and an integer:

52 3. STARTING WITH ROS PROGRAMMING (PART 1)

1 s t r i n g name
2 i n t32 data

When the ros_topic package was created, we hadn’t planned to add custom
message. For this reason, we have to manually add the message_generation
dependency in the CMakeLists.txt. Open this file adding themessage_generation
in the find_package command:

1 f ind_package (ca tk in REQUIRED COMPONENTS
2 roscpp
3 std_msgs
4 message_generation
5)

And decomment the following line and add the custom message file:

1 add_message_fi les (
2 FILES
3 demo .msg
4)
5 generate_messages (
6 DEPENDENCIES
7 std_msgs
8)

As usual, to use the added message, you have to compile the ros_topic
package.

4

Working with ROS actionlib

In ROS services, the user implements a request/reply interaction between
two nodes, but if the reply takes too much time or the server is not finished
with the given work, we have to wait until it completes, blocking the main
application while waiting for the termination of the requested action. In
addition, the calling client could be implemented to monitor the execution
of the remote process. In these cases, we should implement our application
using actionlib. This is another protocol in ROS in which we can preempt
the running request and start sending another one if the request is not fin-
ished on time as we expected. Actionlib packages provide a standard way
to implement these kinds of preemptive tasks. It is is highly used in robot
manipulation and mobile robot navigation. We can see how to implement
an action server and action client implementation. There is another method
in ROS in which we can preempt the running request and start sending an-
other one if the request is not finished on time as we expected. Like ROS
services, in actionlib, we have to specify the action data type. The action
specification is stored inside the action file having an extension of .action.
This file must be kept inside the action folder, that as usual must be placed
inside the ROS package. The action file has the following parts:

• Goal: The action client can send a goal that has to be executed by
the action server. This is similar to the request in the ROS service.
For example, if a robot arm joint wants to move from 45 degrees to 90
degrees, the goal here is 90 degrees.

• Feedback: When an action client sends a goal to the action server, it
will start executing a callback function. Feedback is simply giving the
progress of the current operation inside the callback function. Using
the feedback definition, we can get the current progress. In the pre-
ceding case, the robot arm joint has to move to 90 degrees; in this
case, the feedback can be the intermediate value between 45 and 90
degrees in which the arm is moving.

53

54 4. WORKING WITH ROS ACTIONLIB

• Result: After completing the goal, the action server will send a final
result of completion, it can be the computational result or an acknowl-
edgment. In the preceding example, if the joint reaches 90 degrees it
achieves the goal and the result can be anything indicating it finished
the goal.

Action client and server implement a state machine to manage the execution
of the process. In particular, goals are initiated by an ActionClient. Once a
goal is received by an ActionServer, the ActionServer creates a state machine
(reported in Fig. 4.1) to track the status of the goal. The action server can

Figure 4.1: Action server state machine

be in the following states:

• Pending: The goal has yet to be processed by the action server.

• Active: The goal is currently being processed by the action server.

• Recalling: The goal has not been processed and a cancel request has
been received from the action client, but the action server has not
confirmed the goal is canceled

• Preempting: The goal is being processed, and a cancel request has
been received from the action client, but the action server has not
confirmed the goal is canceled.

• Rejected: The goal was rejected by the action server without being
processed and without a request from the action client to cancel.

• Succeeded: The goal was achieved successfully by the action server.

• Aborted: The goal was terminated by the action server without an
external request from the action client to cancel.

• Recalled: The goal was canceled by either another goal, or a cancel
request, before the action server began processing the goal.

55

• Preempted: Processing of the goal was canceled by either another goal,
or a cancel request sent to the action server.

We can discuss a demo action server and action client here. The demo
action client will send a number as the goal. When an action server receives
the goal, it will count from 0 to the goal number with a step size of 1 and
with a 1 second delay. If it completes before the given time, it will send the
result; otherwise, the task will be preempted by the client. The feedback
here is the progress of counting. The action file of this task is as follows.
Let’s create another ROS package in order to implement such action. We
call this package ros_action.

$ roscd
$ cd ../src
$ catkin_create_pkg ros_action roscpp std_msgs
actionlib actionlib_msgs

Now create the action folder to store the action files:

$ roscd ros_action
$ mkdir action && cd action
$ touch demo.action.

Edit the content of demo.action file as following:

1 #goa l d e f i n i t i o n
2 i n t32 count
3 −−−
4 #r e s u l t d e f i n i t i o n
5 i n t32 f ina l_count
6 −−−
7 #feedback
8 i n t32 current_number

Here, the count value is the goal in which the server has to count from zero
to this number. final_count is the result, in which the final value after
completion of a task and current_number is the feedback value. It will
specify how much the progress is.

Let’s start to create the action server and client sources, creating in
the source directory of the package two cpp files: action_server.cpp and
action_client.cpp.

$ roscd ros_action/src
$ touch action_server.cpp
$ touch action_client.cpp

In the following the code of the server is reported:

56 4. WORKING WITH ROS ACTIONLIB

1 #inc lude " ro s / ro s . h "
2 #inc lude " std_msgs/ Int32 . h "
3 #inc lude <a c t i o n l i b / s e r v e r / s imple_act ion_server . h>
4 #inc lude " ros_act ion /demoAction . h "
5 #inc lude <iostream>
6 #inc lude <sstream>
7

8 c l a s s a c t i on_c l a s s {
9

10 pr i va t e :
11 ro s : : NodeHandle nh_ ;
12 //NodeHandle i n s t ance must be c rea ted be f o r e t h i s l i n e .
13 Otherwise s t range e r r o r may occur .
14 a c t i o n l i b : : S impleActionServer<ros_act ion : : demoAction> as ;
15 // c r e a t e messages that are used to publ i shed
16 // feedback / r e s u l t
17 ros_act ion : : demoFeedback feedback ;
18 ros_act ion : : demoResult r e s u l t ;
19

20 std : : s t r i n g action_name ;
21 i n t goa l ;
22 i n t p rog r e s s ;
23

24 pub l i c :
25 ac t i on_c l a s s (std : : s t r i n g name) :
26 as (nh_, name , boost : : bind
27 (&ac t i on_c l a s s : : executeCB , th i s , _1) , f a l s e) ,
28 action_name (name) {
29 as . r eg i s t e rPreemptCa l lback (
30 boost : : bind(&ac t i on_c l a s s : : preemptCB , t h i s)) ;
31 as . s t a r t () ;
32 }
33

34 void preemptCB (){
35 ROS_WARN("%s got preempted ! " , action_name . c_str ()) ;
36 r e s u l t . f ina l_count = prog r e s s ;
37 as . setPreempted (r e su l t , " I got Preempted ") ;
38 }
39

40 void executeCB (const ros_act ion : : demoGoalConstPtr &goa l) {
41 i f (! as . i sAc t i v e () | | as . isPreemptRequested ()) re turn ;
42 ro s : : Rate ra t e (5) ;
43 ROS_INFO("%s i s p ro c e s s i ng the goa l %d " ,
44 action_name . c_str () , goal−>count) ;

57

45 f o r (p rog r e s s = 1 ; p rog r e s s <= goal−>count ; p rog r e s s++){
46 //Check f o r ro s
47 i f (! r o s : : ok ()) {
48 r e s u l t . f ina l_count = prog r e s s ;
49 as . setAborted (r e su l t , " I f a i l e d ! ") ;
50 ROS_INFO("%s Shutt ing down " , action_name . c_str ()) ;
51 break ;
52 }
53

54 i f (! as . i sAc t i v e () | | as . isPreemptRequested ()) {
55 re turn ;
56 }
57

58 i f (goal−>count <= prog r e s s) {
59 ROS_INFO("%s Succeeded at g e t t i n g to goa l %d " ,
60 action_name . c_str () , goal−>count) ;
61 r e s u l t . f ina l_count = prog r e s s ;
62 as . setSucceeded (r e s u l t) ;
63 }
64 e l s e {
65 ROS_INFO(" Se t t i ng to goa l %d /
66 %d" , feedback . current_number , goal−>count) ;
67 f eedback . current_number = prog r e s s ;
68 as . publ ishFeedback (feedback) ;
69 }
70 r a t e . s l e e p () ;
71 }
72 }
73 } ;
74

75 i n t main (i n t argc , char ∗∗ argv) {
76 ro s : : i n i t (argc , argv , " demo_action ") ;
77 ROS_INFO(" S ta r t i ng Demo Action Server ") ;
78 ac t i on_c l a s s demo_action_obj (ro s : : this_node : : getName ()) ;
79 ro s : : sp in () ;
80 re turn 0 ;
81 }

The salient parts of the code are explained. Start with the header inclusion.
The first header is the standard action library to implement an action server
node, while the second header is generated from the stored action files:

1 #inc lude <a c t i o n l i b / s e r v e r / s imple_act ion_server . h>
2 #inc lude " ros_act ion /demoAction . h "

58 4. WORKING WITH ROS ACTIONLIB

Than a class implementing the server definition, the action feedback and
result is declared:

1 c l a s s a c t i on_c l a s s {
2 pr i va t e :
3 ro s : : NodeHandle nh_ ;
4 a c t i o n l i b : : S impleActionServer<ros_act ion : : demoAction> as ;
5 ros_act ion : : demoFeedback feedback ;
6 ros_act ion : : demoResult r e s u l t ;

In order to make the action server available over the ROS system, our class
must extend the action constructor, by taking an argument such as Node-
handle, the action name, and the server callback. Then, the callback in
case o preemption must be specified. The preemtCB is the callback name
executed when there is a preempt request from the action client.

1 ac t i on_c l a s s (std : : s t r i n g name) :
2 as (nh_, name , boost : : bind
3 (&ac t i on_c l a s s : : executeCB , th i s , _1) , f a l s e) ,
4 action_name (name) {
5 as . r eg i s t e rPreemptCa l lback (boost : : bind(&ac t i on_c l a s s : : preemptCB , t h i s)) ;
6 as . s t a r t () ;
7 }

The callback is executed when the action server receives a new goal and can
terminate in different ways. The action could fail its execution, so we abort
the action callback:

1 i f (! r o s : : ok ()) {
2 r e s u l t . f ina l_count = prog r e s s ;
3 as . setAborted (r e su l t , " I f a i l e d ! ") ;
4 ROS_INFO("%s Shutt ing down " , action_name . c_str ()) ;
5 break ;
6 }

Differently, when the action is concluded we can set a succeeded its end
state:

1 i f (goal−>count <= prog r e s s) {
2 ROS_INFO("%s Succeeded at g e t t i n g to goa l %d " ,
3 action_name . c_str () , goal−>count) ;
4 r e s u l t . f ina l_count = prog r e s s ;
5 as . setSucceeded (r e s u l t) ;
6 }

Finally, in the main function of the action server we need to instantiate a
class object:

1 ac t i on_c l a s s demo_action_obj (ro s : : this_node : : getName ()) ;

59

As specified in the class definition, the input argument of the class construc-
tor is the name of the action. In this case, we used the name of the node
itself as action name.

Let’s now start to create the action client. Edit the content of the
action_client.cpp as following:

1 #inc lude " ro s / ro s . h "
2 #inc lude <iostream>
3 #inc lude <a c t i o n l i b / c l i e n t / s imple_act ion_c l i ent . h>
4 #inc lude <a c t i o n l i b / c l i e n t / te rmina l_state . h>
5 #inc lude " ros_act ion /demoAction . h "
6

7 i n t main (i n t argc , char ∗∗ argv) {
8

9 ro s : : i n i t (argc , argv , " demo_action_client ") ;
10 i f (argc != 3){
11 ROS_INFO("%d " , argc) ;
12 ROS_WARN(" Usage : demo_action_client <goal> <time_to_preempt_in_sec >") ;
13 re turn 1 ;
14 }
15

16 // c r e a t e the ac t i on c l i e n t
17 // true causes the c l i e n t to sp in i t s own thread
18 a c t i o n l i b : : S impleAct ionCl ient<ros_act ion : : demoAction> ac (" demo_action " , t rue) ;
19

20 ROS_INFO(" Waiting f o r ac t i on s e r v e r to s t a r t . ") ;
21

22 //wait f o r the ac t i on s e r v e r to s t a r t
23 ac . waitForServer () ; // w i l l wait f o r i n f i n i t e time
24

25 ROS_INFO(" Action s e r v e r s tar ted , sending goa l . ") ;
26

27 // send a goa l to the ac t i on
28 ros_act ion : : demoGoal goa l ;
29 goa l . count = a t o i (argv [1]) ;
30

31 ROS_INFO(" Sending Goal [%d] and Preempt time o f [%d] " , goa l . count , a t o i (argv [2])) ;
32 ac . sendGoal (goa l) ;
33

34 //wait f o r the ac t i on to re turn
35 bool f in i shed_before_t imeout = ac . waitForResult (ro s : : Duration (a t o i (argv [2]))) ;
36 //Preempting task
37 ac . cance lGoal () ;
38

60 4. WORKING WITH ROS ACTIONLIB

39 i f (f in i shed_before_t imeout) {
40 a c t i o n l i b : : S impleCl i entGoa lState s t a t e = ac . ge tS ta t e () ;
41 ROS_INFO(" Action f i n i s h e d : %s " , s t a t e . t oS t r i ng () . c_str ()) ;
42 //Preempting the proce s s
43 ac . cance lGoal () ;
44 }
45 e l s e
46 ROS_INFO(" Action did not f i n i s h be f o r e the time out . ") ;
47 // e x i t
48 re turn 0 ;
49 }

To declare the action client object we use the following line of code:

1 a c t i o n l i b : : S impleAct ionCl ient<ros_act ion : : demoAction>
2 ac (" demo_action " , t rue) ;

Then we ask the client to wait an infinite time if there is no action server
running on the system. It will exit only when there is an action server
running on the system:

1 ac . waitForServer () ;

Finally, we call the server of the action specifying the goal to reach:

1 ros_act ion : : demoGoal goa l ;
2 goa l . count = a t o i (argv [1]) ;
3 ac . sendGoal (goa l) ;

Finally, we required the client to preempt the action if the server doesn’t
terminate after a certain amount of time:

1 bool f in i shed_before_t imeout =
2 ac . waitForResult (ro s : : Duration (a t o i (argv [2]))) ;

As you can see from the source code, the goal and the time to wait the server
termination are required as a command line input. We will see how to call
this program in the following.

As usual to compile the client and server you should edit the CMakeLists.txt
file. Other than the executable, we should require to the build tool to com-
pile the action file as well. To do this, uncomment the related section of the
make file:

1 ## Generate a c t i on s in the ’ act ion ’ f o l d e r
2 add_act ion_f i l e s (
3 FILES
4 demo . ac t i on
5)
6 ## Generate added messages and s e r v i c e s with any dependenc ies l i s t e d here
7 generate_messages (

61

8 DEPENDENCIES
9 std_msgs

10 act ion l ib_msgs
11)

And add the executable file:

1 add_executable (ac t ion_server s r c / ac t i on_server . cpp)
2 t a r g e t_ l i n k_ l i b r a r i e s (ac t ion_server ${catkin_LIBRARIES})
3 add_executable (a c t i on_c l i en t s r c / a c t i on_c l i e n t . cpp)
4 t a r g e t_ l i n k_ l i b r a r i e s (a c t i on_c l i e n t ${catkin_LIBRARIES})

After catkin_make, we can run these nodes using the following commands:
Run roscore:

$ roscore

Launch the action server node:

$ rosrun ros_action action_server

Launch the action client node with two arguments (i.e. reach the number
13 in maximum 10 seconds):

$ rosrun ros_action action_client 13 10

4.0.1 ROS Action messages

Internally the actionlib communication works very similar to topic com-
munication. In fact, several new topics appear after ran the server:

$ rostopic list

Output:
/demo_action/cancel
/demo_action/feedback
/demo_action/goal
/demo_action/result
/demo_action/status

These topics are directly published by the actionlib client. Each topic ac-
cepts a different part of the action definition, for example, the /demo_action/goal
topic, accepts a ros_action/demoActionGoal message:

1 std_msgs/Header header
2 uint32 seq
3 time stamp
4 s t r i n g frame_id
5 act ion l ib_msgs /GoalID goal_id

62 4. WORKING WITH ROS ACTIONLIB

6 time stamp
7 s t r i n g id
8 ros_act ion /demoGoal goa l
9 i n t32 count

4.0.2 Additional ROS tools

In this section a set of useful additional tool of ROS are discussed.

Bagfile

A bag is a file format used in ROS for storing ROS message data. Bags have
an important role in ROS and a variety of tools have been written to allow
you to store, process, analyze, and visualize them. It represents the main
logging system for ROS data and can be used to save and later work on a
stream of topic data. For example, if you are working with a camera sensor,
you can just record the sensor output placed on its scene and work with the
captured data without the hardware.

To create a new bagfile you can use the following command:

$ rosbag record [TOPICS] [OPTIONS]

In particular, you can choose the -a option to record all topics active in
your system, while the option -O allows you to specify the bagfile name. If
the name of the file is not specified, the current date is used to naming it.
The complete list of rosbag options is available here: http://wiki.ros.
org/rosbag/Commandline.

ROS parameter server

When programming a robot, we might have to define robot parameters,
such as robot controller gains P, I, and D. ROS provides a parameter server,
which is a shared server in which all ROS nodes can access parameters from
this server. A node can read, write, modify, and delete parameter values
from the parameter server. We can store these parameters in a file and load
them into the server. The server can store a wide variety of data types and
can even store dictionaries. The programmer can also set the scope of the
parameter, that is, whether it can be accessed by only this node or all the
nodes.

The rosparam tool is used to get and set the ROS parameter from the
command line. To set a value in the given parameter:

$ rosparam set [parameter_name] [value]

To retrieve a value from the given parameter:

http://wiki.ros.org/rosbag/Commandline
http://wiki.ros.org/rosbag/Commandline

63

$ rosparam get [parameter_name]

In order to retrieve the value of a parameter from source code, in C++
you can use the param function:

1 i n t my_num;
2 nh . param ("my_num" , my_num, 13) ;

This function accepts as arguments the name of the parameter, the variable
to fill with its value and a default value. The default value is used when the
requested parameter is not present in the parameter server.

We can include these lines in a new version of our publisher node, who
start to publish the integer starting from my_num value.

1 #inc lude " ro s / ro s . h "
2 #inc lude " std_msgs/ Int32 . h "
3 #inc lude <iostream>
4

5 i n t main (i n t argc , char ∗∗ argv) {
6 ro s : : i n i t (argc , argv , " ros_top ic_publ i sher ") ;
7 ro s : : NodeHandle nh (" ~ ") ;
8 ro s : : Pub l i she r topic_pub =
9 nh . adve r t i s e <std_msgs : : Int32 >("/numbers " , 1 0) ;

10

11 i n t my_num;
12 nh . param ("my_num" , my_num, 42) ;
13

14 ro s : : Rate ra t e (1 0) ;
15 i n t count = my_num;
16 whi le (ro s : : ok ()) {
17 std_msgs : : Int32 msg ;
18 msg . data = count++;
19 ROS_INFO("%d " ,msg . data) ;
20 topic_pub . pub l i sh (msg) ;
21 ro s : : spinOnce () ;
22 r a t e . s l e e p () ;
23 }
24 re turn 0 ;
25 }

After properly compiled, try to set a desired value for my_int.

Using ROS Launch files

Until now, we just used rosrun command to start a node. Another way to
do this is using the roslaunch command using the ROS launch files.

64 4. WORKING WITH ROS ACTIONLIB

Launch files are a very useful feature for launching more than one node.
We can write all nodes inside an XML-based file called launch files parsing
it with roslaunch. This command will also automatically start the ROS
Master and the parameter server. So, in essence, there is no need to start the
roscore command and individual node; if we launch the file, all operations
are made in a single command.

Launch files can be also used to set ROS parameters. We can try to set
the initial value for the ROS publisher using the launch file. Just create
a new file in the ros_topic package (the common way is to put it into a
sub-directory called launch) and paste the following contents.

<?xml version="1.0" ?>

<launch>
<node pkg="ros_topic" name="ros_topic_publisher"
type="topic_publisher_param" output="screen">

<param name="my_num" value="13" type="int" />

</node>
</launch>

In this file we require to start a new node represented by the executable:
topic_publisher_param, from package ros_topic. As param for this node
we specified the value of my_num, similarly to the previous example, in which
this param has been set using the command line tool.

Catkin build

A different way to compile ROS workspace is using catkin build. To install
it you can use APT:

$ sudo apt-get install python-catkin-tools

While, to build a specific package:

$ catkin build <target_package>

The main advantages of catkin build are that you can call it from ev-
erywhere and always build packages seperately. In addition, catkin clean
cleans everything. Differently, with catkin_make the same operation is
done deleting the build and devel directories. However, you can’t mix
catkin build and catkin_make.

5

Robot Modeling

5.0.1 starting with robot modeling

In previous lessons of Robotics Lab course we just discuss about the capa-
bilities of ROS showing initial examples to use its plumbing features. In
this lesson instead, we start to see how ROS is so much useful in robot pro-
gramming when you need functionalities already implemented in other ROS
packages. In particular, several robotic software need for the knowledge
about the kinematic and dynamic structure of the robot to work. For exam-
ple, to solve problems like collision checking, forward or inverse kinematics
and so on, automatic system need to know how the robot is composed and
configured.

Nevertheless, robot modeling is important also for visualization and sim-
ulation. In this context, graphically display the configuration of a robot in
its environment helps developers to debug their applications. Finally, sim-
ulation engines (like the one used in this course: Gazebo) use robot models
to spawn a simulated robot into the environment.

The aim of this lesson is twofold:
• Understand how robot models are used in robot programming

• Learn how to create or improve a robot model and interfacing its with
other ROS packages

Consider that designing the model of a robot from scratch is not easy,
since its kinematic chain could be quite complex. In addition, you need a
way to properly characterize its dynamics. Automatic model generator tools
exist that start from the 3d CAD model of the robot to generate a model file.
However, understand how a robot model file is typically composed appears
to be extremely useful when you want to adjust it or add additional elements
to its model, like a custom gripper or sensors.

The most popular file format to describe the model of a robot is called
URDF (Unified Robot Description Format) and its also the one officially
supported by ROS.

65

66 5. ROBOT MODELING

5.0.2 RViz with robot model

Before starting to see how robot model are composed, let’s discuss some
tools used to interact with such models.

The first tool discussed here is called RViz (ROS Visualization). As
already said, this tool is very useful in ROS because is able to show infor-
mation available in ROS system to a graphical way. You can start RViz as
a ros node:

$ rosrun rviz rviz

After ran this command, if the roscore is active a new window is opened.

Figure 5.1: RViz display panel

The most useful panel of RViz is the display panel (show in Fig. 5.1).
In this panel you can configure the plugin loaded in your system that are
responsible to display in RViz window. In particular, in the Global Options
section, you must select the fixed frame in which the information are dis-
played. Be careful, if the fixed frame or the link between this frame and the
information to display doesn’t exist an error message is reported.

Regarding the model of the robot, RViz is able to display the model of
the robot and move its joints as well as specified in he model file, using the
plugin RobotModel. In this lesson we will see how to obtain a result similar
to the one shown in Fig. 5.2. In this figure you can also see that is possible
to modify the position of each joint of the robot considering the joint limit
specified in its model. In this case we are not applying any controller, but
just change the robot configuration in the visualization.

5.1 Robot modeling using URDF
The most important package to model robot using ROS is the URDF pack-
age. This package contains a C++ parser for the Unified Robot Description

5.1. ROBOT MODELING USING URDF 67

Figure 5.2: RobotModel plugin in RViz.

Format (URDF), which is an XML file representing the robot model thanks
to a set of rules that specify the elements of the robot. In particular, URDF
represents the kinematic and dynamic description of the robot, the visual
representation of the robot, and the collision model of the robot.

The following tags are the commonly used URDF tags to compose a
URDF robot model:

• robot: This tag encapsulates the entire robot model that can be rep-
resented using URDF. Inside the robot tag, we can define the name of
the robot, the links, and the joints of the robot. As shown in Fig. 5.3,
a robot model consists of connected links and joints.

1 <robot name="<name o f the robot >"
2 <l ink> </l ink>
3 <l ink> </l ink>
4 <jo in t > </j o in t >
5 <jo in t > < / j o i n t >
6 </robot>

• link: The link tag represents a single link of a robot. Using this tag,
we can model a robot link and its properties. The modeling includes
the size, the shape, and the color, and it can even import a 3D mesh to
represent the robot link. We can also provide the dynamic properties
of the link, such as the inertial matrix and the collision properties

1 <l i n k name="<name o f the l ink >">
2 <i n e r t i a l > < / i n e r t i a l >
3 <vi sua l > < / v i sua l >
4 <c o l l i s i o n > < / c o l l i s i o n >
5 </l ink>

68 5. ROBOT MODELING

The Visual section represents the real link of the robot, and the area
surrounding the real link is the Collision section. The Collision section
encapsulates the real link to detect collision before hitting the real link.

• joint: The joint tag represents a robot joint. We can specify the
kinematics and the dynamics of the joint, and set the limits of the
joint movement and its velocity. The joint tag supports the different
types of joints, such as revolute, continuous, prismatic, fixed, floating,
and planar.

1 <j o i n t name="<name o f the j o i n t >">
2 <parent l i n k=" l i nk1 "/>
3 <ch i l d l i n k=" l i nk2 "/>
4 <ca l i b r a t i o n />
5 <dynamics damping / >
6 <l im i t e f f o r t />
7 </jo in t >

A joint is formed between two links; the first is called the Parent link,
and the second is called the Child link.

In the next lessons we will see how to include additional tags to specify the
sensors of the robot.

Figure 5.3: Robot model represented by the URDF.

5.1. ROBOT MODELING USING URDF 69

5.1.1 Pan-tilt robot model

Before creating the URDF file for the robot, let’s create an ROS package in
the ROS workspace using the following command:

$ catkin_create_pkg rl_robot_description_pkg roscpp tf geometry_msgs urdf rviz xacro

The package mainly depends on the urdf and xacro packages. If these pack-
ages have not been installed on to your system, you can install them using
the package manager:

$ sudo apt-get install ros-$ROS_DISTRO-urdf
$ sudo apt-get install ros-$ROS_DISTRO-xacro

We can create the urdf file of the robot inside this package and create launch
files to display the created urdf in RViz. Before creating the urdf file for this
robot, let’s create urdf and launch folders inside our package. The urdf
folder can be used to keep the model files that we are going to create.

The first robot mechanism that we are going to design is a pan-and-tilt
mechanism, as shown in Fig. 5.4.

Figure 5.4: Pan tilt mechanism.

The following tag declare a new RobotModel called pan_tilt.

1 <?xml ve r s i on ="1.0"?>
2 <robot name="pan_t i l t ">

The first link of the robot is the base_link. Typically, the base_link is
the fixed frame of the robot and it represents the first link of the kinematic
chain. In this example, the shape of the robot is drawn using basic 3d shape
(a cylinder). In other cases, the geometry and its collision is directly get by
the CAD model of the robot part.

70 5. ROBOT MODELING

1 <l i n k name="base_l ink">
2 <vi sua l >
3 <geometry>
4 <cy l i nd e r l ength ="0.01" rad iu s ="0.2"/>
5 </geometry>
6 <o r i g i n rpy="0 0 0" xyz="0 0 0"/>
7 <mate r i a l name="ye l low">
8 <co l o r rgba="1 1 0 1"/>
9 </mater ia l>

10 </v i sua l >
11 <c o l l i s i o n >
12 <geometry>
13 <cy l i nd e r l ength ="0.03" rad iu s ="0.2"/>
14 </geometry>
15 <o r i g i n rpy="0 0 0" xyz="0 0 0"/>
16 </c o l l i s i o n >
17 <i n e r t i a l >
18 <mass value="1"/>
19 <i n e r t i a ixx ="1.0" ixy ="0.0" i x z ="0.0"
20 iyy ="1.0" i y z ="0.0" i z z ="1.0"/>
21 </ i n e r t i a l >
22 </l ink>

We need to connect two links of the robot. The links are connected using
a joint. The first joint to specify is the pan joint (rotation around the z axis).
The main elements of the joint tag are the parent and the child links that
specify which links must be connected. The type of the joint specifies its
behavior in the kinematic chain. The rotation angle of this joint is specified
with the axis tag.

1 <j o i n t name="pan_joint " type=" r evo lu t e ">
2 <parent l i n k="base_l ink "/>
3 <ch i l d l i n k="pan_link"/>
4 <o r i g i n xyz="0 0 0.1"/>
5 <ax i s xyz="0 0 1" />
6 <l im i t e f f o r t ="300" v e l o c i t y ="0.1" lower="−3.14" upper="3.14"/>
7 <dynamics damping="50" f r i c t i o n ="1"/>
8 </jo in t >

Link the base_link the pan link is represented by a cylinder.

1 <l i n k name="pan_link">
2 <vi sua l >
3 <geometry>
4 <cy l i nd e r l ength ="0.4" rad iu s ="0.04"/>
5 </geometry>

5.1. ROBOT MODELING USING URDF 71

6 <o r i g i n rpy="0 0 0" xyz="0 0 0.09"/>
7 <mate r i a l name="red">
8 <co l o r rgba="0 0 1 1"/>
9 </mater ia l>

10 </v i sua l >
11 <c o l l i s i o n >
12 <geometry>
13 <cy l i nd e r l ength ="0.4" rad iu s ="0.06"/>
14 </geometry>
15 <o r i g i n rpy="0 0 0" xyz="0 0 0.09"/>
16 </c o l l i s i o n >
17 <i n e r t i a l >
18 <mass value="1"/>
19 <i n e r t i a ixx ="1.0" ixy ="0.0" i x z ="0.0" iyy ="1.0" i y z ="0.0" i z z ="1.0"/>
20 </ i n e r t i a l >
21 </l ink>

The rest of the model file is similar to its first part. Another rotational
join (rotating around the y axis) and a final link.

1 <j o i n t name=" t i l t _ j o i n t " type=" r evo lu t e ">
2 <parent l i n k="pan_link"/>
3 <ch i l d l i n k=" t i l t _ l i n k "/>
4 <o r i g i n xyz="0 0 0.2"/>
5 <ax i s xyz="0 1 0" />
6 <l im i t e f f o r t ="300" v e l o c i t y ="0.1" lower="−4.64" upper="−1.5"/>
7 <dynamics damping="50" f r i c t i o n ="1"/>
8 </jo in t >

1 <l i n k name=" t i l t _ l i n k ">
2 <vi sua l >
3 <geometry>
4 <cy l i nd e r l ength ="0.4" rad iu s ="0.04"/>
5 </geometry>
6 <o r i g i n rpy="0 1 .5 0" xyz="0 0 0"/>
7 <mate r i a l name="green">
8 <co l o r rgba="1 0 0 1"/>
9 </mater ia l>

10 </v i sua l >
11 <c o l l i s i o n >
12 <geometry>
13 <cy l i nd e r l ength ="0.4" rad iu s ="0.06"/>
14 </geometry>
15 <o r i g i n rpy="0 1 .5 0" xyz="0 0 0"/>
16 </c o l l i s i o n >

72 5. ROBOT MODELING

17 <i n e r t i a l >
18 <mass value="1"/>
19 <i n e r t i a ixx ="1.0" ixy ="0.0" i x z ="0.0" iyy ="1.0" i y z ="0.0" i z z ="1.0"/>
20 </ i n e r t i a l >
21 </l ink>
22 </robot>

In an URDF file the name of the joints and link must be unique. Since
this file is only interpreted (and not compiled) any error in its format will
be reported only when the model of the robot is loaded. Actually, there are
some tools to check and debug the URDF file, link the check_urdf command.
This command accepts as input the file to check. In our case:

$ roscd rl_robot_description_pkg/urdf/
$ check_urdf pan_tilt.urdf

This is the output of the command:

robot name is: pan_tilt
---------- Successfully Parsed XML ---------------
root Link: base_link has 1 child(ren)
child(1): pan_link
child(1): tilt_link

Using this command you can check if the kinematic chain defined in the
robot model file is correct. If we want to view the structure of the robot
links and joints graphically, we can use the following command:

$ urdf_to_graphiz pan_tilt.urdf

This command will generate a pdf file of the kinematic chain, as depicted
in Fig. 5.5.

5.1.2 Display Robot Models in RViz

We are now ready to display our model in RViz. This is particularly useful
to understand if the robot model appears to be correct. In fact, using RViz
we are able to see how the shape of the robot is and test the connection
between the robotic links. To visualize the robot model in RViz, we must
load the robot model in a ROS param and start some nodes that will be
discussed at the end this lesson.

Create a .launch file in the package directory:

$ roscd rl_robot_description_pkg
$ mkdir launch && cd launch
$ touch display.launch

The content of this file is reported in the following:

5.1. ROBOT MODELING USING URDF 73

Figure 5.5: Graph of joint and links in the pan-and-tilt mechanism.

<?xml version="1.0" ?>

<launch>
<param name="robot_description"
textfile="$(find rl_robot_description_pkg)/urdf/pan_tilt.urdf" />

These lines load the robot model into a ROS parameter called robot_description.
In order to be much general as possible, to reach the location of the URDF
file the find command is used. In particular, using the $find command we
can directly reach the location of the package.

<node name="joint_state_publisher"
pkg="joint_state_publisher" type="joint_state_publisher" />
<node name="robot_state_publisher"
pkg="robot_state_publisher" type="robot_state_publisher" />

We additionally start two more nodes: the robot_state_publisher and
the joint_state_publisher that will be later discussed.

<node name="rviz" pkg="rviz" type="rviz"
args="-d $(find rl_robot_description_pkg)/urdf.rviz" required="true" />
</launch>

Finally, we launch RViz program. We can also specify a configuration file
located in the same directory of the package of the robot model. In this way,
the visualization settings can be automatically loaded when RViz starts. The
output of the display.lauch file is show in Fig. 5.6

74 5. ROBOT MODELING

$ roslaunch rl_robot_description_pkg display.launch

To use the GUI shown in the picture you should launch the display_gui.launch
file in which the joint_state_publisher node is substituded by the
joint_state_publisher_gui one. Let’s see what is behind the visualiza-

Figure 5.6: Display pan tilt robot using RViz

tion process of RViz. This is important to understand because the same
information needed by RViz visualization are used by all the other external
packages to calculate robot kinematic or allow mobile robot navigation.

The first element discussed here is the TF package. In particular, to
exploit the model of a robot its configuration must be calculated consider-
ing the position of its joints and similarly, the full pose of a mobile robot
of a mobile robot inside its environment should be available to allow its
navigation.

ROS Transformation (tf) package

A robotic system typically has many 3D coordinate frames that change over
time, such as a world frame, base frame, gripper frame, head frame, etc. . . .
tf package keeps track of all these frames over time, and allows developers
to develop queries to retrieve the relative pose of a frame with respect to the
other frames or the position of an object not belonging to the robot with
respect to the robotic end effector:

• How is oriented the head of the head of the robot with respect to its
base frame?

• What is the pose of the object in my gripper relative to my base?

5.1. ROBOT MODELING USING URDF 75

Figure 5.7: Add tf plugin.

• What is the current pose of the base frame in the map frame?

Information about the coordinate frames of a robot is available to all ROS
components. Like other ROS basic packages, tf can be used both with
command line tools (implemented as ROS nodes) and using Python and
C++ API. In particular, command line tools include:

• view_frames: visualizes the full tree of coordinate transforms. This
tool is a graphical debugging tool creating a PDF graph of the full
transform tree. To test this command just launch the display.launch
file above discussed and run the following commands:

$ rosrun tf view_frames

After few seconds a pdf file is generated in your current directory. In
linux you can open it using evince command:

$ evince frames.pdf

• tf_monitor: monitors transforms between frames: Similarly to view_frames
command, tf_monitor print information about the current coordinate
transform tree to console. Without arguments, this argument prints
the result for all frames. To get a specific transformation between two
know frames you can use the following syntax:

$ tf_monitor <source_frame> <target_target>

76 5. ROBOT MODELING

Note that this command only print information about the tree and
not its contents.

• tf_echo: prints specified transform to screen. To use this command
the syntax is:

$ tf_echo <source_frame> <target_frame>

In our example to retrieve the pose of the tilt_link relative to the
base_link you can run the following command:

$ rosrun tf tf_echo /base_link /tilt_link

The output of this command is here reported:

- Translation: [0.000, 0.000, 0.300]
- Rotation: in Quaternion [0.983, 0.034, 0.180, -0.006]
in RPY (radian) [-3.142, -0.361, 0.069]
in RPY (degree) [-180.000, -20.708, 3.977]

tf can also be visualized using RViz adding the proper plugin. Like the
robot model plugin, you can add tf plugin using the Add button on RViz
interface, as show in Fig. 5.7.

In ROS a frame is a coordinate system and the coordinate systems in
are always in 3D right-handed, with X forward, Y left, and Z up. You can
see how important is the fixed frame setup of RViz. In fact, you can decide
the reference system in which tf are displayed.

As for the API, tf includes several data type to represent object poses
like:

• Quaternion: tf::Quaternion

• Transform: tf::Transform

• Vector: tf::Vector3

• Point: tf::Point

• Pose: tf::Pose

tf offers different features to handle the coordinate frame of your robot.
In this lesson, we focus on the possibility to retrieve information by the tf
tree. Let’s create a new package to print the current pose of the tilt_link
relative to the base_link

$ roscd rl_robot_description_pkg/src
$ touch tf_listener.cpp

5.1. ROBOT MODELING USING URDF 77

We will mainly use two functions from tf API:

• waitForTransform:
1 bool t f : : Trans formListener : : waitForTransform
2 (const std : : s t r i n g
3 &target_frame , const std : : s t r i n g &source_frame ,
4 const ro s : : Time &time , const ro s : : Duration &timeout)

This function test if source_frame can be transformed to target_frame
at time time. This method returns a bool whether the transform can
be evaluated. This is a blocking method that returns when the elapsed
time reaches the Duration.

• lookupTransform:
1 void t f : : Trans formListener : : lookupTransform
2 (const std : : s t r i n g &target_frame ,
3 const std : : s t r i n g &source_frame ,
4 const ro s : : Time &time , StampedTransform &transform)

This function fills transform data with the transform from source_frame
to target_frame at time. This method is the core functionality of
the tf library, however most often the transform* methods will be
used by the end user. This methods is designed to be used within
transform*() methods. The direction of the transform returned will
be from the target_frame to the source_frame. Which if applied to
data, will transform data in the source_frame into the target_frame.

The content of tf_listener.cpp is here reported:
1 i n t main (i n t argc , char ∗∗ argv) {
2 ro s : : i n i t (argc , argv , " tf_example ") ;
3 ro s : : NodeHandle nh ;
4 //Wait ROS node s t a r t s
5 s l e e p (1) ;
As usual, the first part of the code initializes the ROS node.

1 //Dec lare the l i s t e n e r to use c++ t f API
2 t f : : Trans formListener l i s t e n e r ;
3 //Dec lare the tranfsorm ob j e c t to s t o r e t f data
4 t f : : StampedTransform transform ;
Then, we declare the objects needed to use tf API: a listener for the ROS
transforms and the object to store rotation and translation data.

1 f o r (i n t i =0; i <10; i++) {
2 t ry {
3 //We want the cur rent trans form
4 ro s : : Time now = ros : : Time : : now () ;

78 5. ROBOT MODELING

We specify the time in which we require the transform. To get the current
rototranslation use: ros::Time::now().

1 i f (l i s t e n e r . waitForTransform ("/ base_l ink " , "/ pan_link " , now , ro s : : Duration (1 . 0))) {
2 l i s t e n e r . lookupTransform ("/ base_l ink " , "/ pan_link " , now , trans form) ;
3 std : : cout << " Trans la t i on : " << transform . ge tOr ig in () . x () << " " << transform . ge tOr ig in () . y () << " " << transform . ge tOr ig in () . z () << std : : endl ;
4 std : : cout << " Rotation : " << transform . getRotat ion () .w() << " " << transform . getRotat ion () . x () << " " << transform . getRotat ion () . y () << " " << transform . getRotat ion () . z () << std : : endl ;

Here, we check if the desired transform is available in the tf tree. If the
transform is present we require the value of the transform that is stored into
the transform object.

1 //Convert quatern ion to eu l e r ang l e s
2 t f : : Matrix3x3 m(trans form . getRotat ion ()) ;
3 double r o l l , p itch , yaw ;
4 m. getRPY(r o l l , p itch , yaw) ;
5

6 std : : cout << "RPY: " <<
7 r o l l << " , " << pi tch << " , " << yaw << std : : endl ;
8 }
9 } e l s e { ROS_WARN(" Transform not ready ") ; }

Finally, we change the representation system for link orientation, from quater-
nion to euler angles.

1 catch (t f : : TransformException ex){
2 ROS_ERROR("%s " , ex . what ()) ;
3 ro s : : Duration (1 . 0) . s l e e p () ;
4 }
5 ro s : : Duration (1 . 0) . s l e e p () ;
6 }
7 }

After compiled the node, you can run this code after launched the display.launch
file that load the model of the robot and fill the tf tree.

$ roslaunch rl_robot_description_pkg display.launch
$ rosrun rl_robot_description_pkg tf_listener

In the next lessons of this course we will learn more about ROS tf system,
but now continue to analyze the pan-tilt example. In particular, we saw
how the kinematic chain of our robot model is updated when the values
of its joints changes. The obvious question that we should made now is:
who is publishing tf in our ROS tf tree? Remember that we launched two
additional nodes in the display.launch file: joint_state_publisher and
robot_state_publisher.

5.1. ROBOT MODELING USING URDF 79

robot state publisher

robot_state_publisher is a fundamental package or ROS. It allows you
to publish the state of a robot to tf. tf are published using the in-
formation contained into the URDF file describing the robot. In particu-
lar, robot_state_publisher uses the URDF specified by the parameter
robot_description and the joint positions from the topic joint_states
to calculate the forward kinematics of the robot and publish the results via
tf.

So, to work properly this package needs for two input:

• Robot model: loaded into the ROS parameter server

• Joint position: published as sensor_msgs/JointState

We already seen how can load the model of the robot into the parameter
server. As for the joint position, robot_state_publisher expects that
a sensor_msgs/JointState is published on a topic called joint_states.
sensor_msgs/JointState is structured as follow:

std_msgs/Header header
uint32 seq
time stamp
string frame_id
string[] name
float64[] position
float64[] velocity
float64[] effort

In principle, for each joint of the robot, a properly joint_states message
stores its name, position, velocity and effort. Notice that only fields required
to make things work are joint name and position.

So, at this point we understood how the tf using the information about
the position of the joint of the robot and its kinematic structure. But, the
last question to reply is: who is publishing the position of the joints?

joint state publisher

This package publishes sensor_msgs/JointState messages for a robot.
The package reads the robot_description parameter, finds all of the non-
fixed joints and publishes a JointState message with all those joints defined.
In our example, we used this package in conjunction with the robot_state_publisher
node to also publish transforms for all joint states. In particular, in our
pan-tilt example we used the GUI plugin to inform the joint_state_publisher
package about the value of each joint.

In conclusion, the chain to retrieve information from our robot model is
closed:

80 5. ROBOT MODELING

• joint_state_publisher uses URDF to get information about the name
and the type of each joint, then it publish a joint_states message
containing such values.

• robot_state_publisher uses the URDF model to get information about
the kinematic structure of the robot and the joint_states message
to fill the tf tree.

• RViz uses the URDF to display the robot model, and the tf tree to
display the relative position of each joint of the robot.

5.1.3 Robot modeling using XACRO

URDF structure is not flexible when you need to create a complex robot
model. Some of the main features that URDF is missing are simplicity,
reusability, modularity, and programmability. If someone wants to reuse
a URDF block 10 times in his robot description, he can copy and paste
the block 10 times. If there is an option to use this code block and make
multiple copies with different settings, it will be very useful while creating
the robot description. The URDF is a single file and we can’t include other
URDF files inside it. This reduces the modular nature of the code. All code
should be in a single file, which reduces the code’s simplicity. Also, if there
is some programmability, such as adding variables, constants, mathematical
expressions, and conditional statements, in the description language, it will
be more user friendly. xacro is a file description format to meet these
conditions. It mainly:

• Simplify URDF: The xacro is the cleaned-up version of URDF. It
creates macros inside the robot description and reuses the macros.
This can reduce the code length. Also, it can include macros from other
files and make the code simpler, more readable, and more modular.

• Programmability: The xacro language supports a simple program-
ming statement in its description. There are variables, constants,
mathematical expressions, conditional statements, and so on that make
the description more intelligent and efficient.

xacro file format represents an updated version of URDF. However these
two formats have the same power of expression. You can always convert a
xacro file in an URDF one and vice versa.

In the following some features of xacro file format are discussed:

• Property: We can declare variables used anywhere in the code and
are helpful to change the constants of your robot model. For example,
if you want to define the length of a link or a size of a wheel you can
use a parameter:

5.1. ROBOT MODELING USING URDF 81

<xacro:property name="base_link_length" value="0.1" />

• You can also fit properties into blocks:

<xacro:property name="front_left_origin">
<origin xyz="0.3 0 0" rpy="0 0 0" />
</xacro:property>

<pr2_wheel name="front_left_wheel">
<xacro:insert_block name="front_left_origin" />
</pr2_wheel>

• Using xacro file you can also use math expressions:

<xacro:property name="radius" value="4.3" />
<circle diameter="${2 * radius}" />

• and conditional blocks:

<xacro:if value="<expression>">
<... some xml code here ...>
</xacro:if>
<xacro:unless value="<expression>">
<... some xml code here ...>
</xacro:unless>

• However, the most important element of xacro format is the possibility
to define macro blocks. For example, you can create a general inertial
block to use in our model:

<xacro:macro name="inertial_matrix" params="mass">
<inertial>
<mass value="${mass}" />
<inertia ixx="0.5" ixy="0.0" ixz="0.0"
iyy="0.5" iyz="0.0" izz="0.5" />
</inertial>
</xacro:macro>

Here, the macro is named inertial_matrix, and its parameter is
the mass mass. The mass parameter can be used inside the inertial
definition using ${mass}. We can replace each inertial code with a
single line, as given here:

<xacro:inertial_matrix mass="1"/>

82 5. ROBOT MODELING

6

Robot Modeling using xacro

In previous section with learn how to model robot using URDF file format.
URDF structure is not flexible when you need to create a complex robot
model. Some of the main features that URDF is missing are simplicity,
reusability, modularity, and programmability. If someone wants to reuse a
URDF block 10 times in his robot description, he must copy and paste it
10 times. If there is an option to use this code block and make multiple
copies with different settings, it will be very useful while creating the robot
description. The URDF is a single file and we can’t include other URDF
files inside it. This reduces the modular nature of the code. All code should
be in a single file, which reduces the code’s simplicity. Also, if there is
some programmability, such as adding variables, constants, mathematical
expressions, and conditional statements, in the description language, it will
be more user friendly. xacro is a file description format to meet these
conditions. In particular:

• Simplify URDF: The xacro is the cleaned-up version of URDF. It
creates macros inside the robot description and reuses the macros.
This can reduce the code length. Also, it can include macros from other
files and make the code simpler, more readable, and more modular.

• Increase robot model programmability: The xacro language supports
a simple programming statement in its description. There are vari-
ables, constants, mathematical expressions, conditional statements,
and so on that make the description more intelligent and efficient.

6.0.1 xacro format

xacro file format represents an updated version of URDF. However these two
formats have the same power of expression. You can always convert a xacro
file in an URDF one and vice versa.

In the following some features of xacro file format are discussed:

83

84 6. ROBOT MODELING USING XACRO

• Property: We can declare variables used anywhere in the code and
are helpful to change the constants of your robot model. For example,
if you want to define the length of a link or a size of a wheel you can
use a parameter:

<xacro:property name="base_link_length" value="0.1" />

• You can also fit properties into blocks:

<xacro:property name="front_left_origin">
<origin xyz="0.3 0 0" rpy="0 0 0" />
</xacro:property>

<pr2_wheel name="front_left_wheel">
<xacro:insert_block name="front_left_origin" />
</pr2_wheel>

• Using xacro file you can also use math expressions:

<xacro:property name="radius" value="4.3" />
<circle diameter="${2 * radius}" />

• and conditional blocks:

<xacro:if value="<expression>">
<... some xml code here ...>
</xacro:if>
<xacro:unless value="<expression>">
<... some xml code here ...>
</xacro:unless>

• However, the most important element of xacro format is the possibility
to define macro blocks. For example, you can create a general inertial
block to use in our model:

<xacro:macro name="inertial_matrix" params="mass">
<inertial>
<mass value="${mass}" />
<inertia ixx="0.5" ixy="0.0" ixz="0.0"
iyy="0.5" iyz="0.0" izz="0.5" />
</inertial>
</xacro:macro>

Here, the macro is named inertial_matrix, and its parameter is the
mass. The mass parameter can be used inside the inertial definition
using ${mass}. We can replace each inertial code with a single line,
as given here:

85

<xacro:inertial_matrix mass="1"/>

In order to show the capabilities of xacro modeling, try to re-write
the pan-tilt robot model discussed in Lesson 5 using xacro file format.
Move into the rl_robot_description_pkg/urdf directory and create the
following two files:

$ roscd rl_robot_description_pkg/urdf/
$ touch pan_tilt_macro.xacro
$ touch pan_tilt.xacro

The general idea is that pan_tilt.xacro defines the structure of our robot
(like a source file) while the pan_tilt_macro.xacro contains a set of defi-
nition of possible robot parts (like header file).

Let’s start to see the content of the pan_tilt_macro.xacro file:
As usual we include the prolog of the file, and also open a new robot

tag. In this case we have to specify the namespace of our xml file (xmlns
means XML namespace).

1 <?xml ve r s i on ="1.0"?>
2 <robot name="pan_tilt_macro " xmlns : xacro="http :// wik i . ro s . org / xacro">

Then we define the macro to instantiate the base_link of the robot.
In this case we are not using the power of xacro definition because our
base_link is unique in our robot. For this reason except its name, the
other element of this link are static (its visual, geometry, collision, inertia,
and so on . . .). As you may note, the body of this macro is exactly the same
of the one contained into the URDF file.

1 <xacro : macro name="base_link_macro " params="base_link_name">
2 <l i n k name="${base_link_name}">
3 <vi sua l >
4 <geometry>
5 <cy l i nd e r l ength ="0.01" rad iu s ="0.2"/>
6 </geometry>
7 <o r i g i n rpy="0 0 0" xyz="0 0 0"/>
8 <mate r i a l name="ye l low">
9 <co l o r rgba="1 1 0 1"/>

10 </mater ia l>
11 </v i sua l >
12 <c o l l i s i o n >
13 <geometry>
14 <cy l i nd e r l ength ="0.03" rad iu s ="0.2"/>
15 </geometry>
16 <o r i g i n rpy="0 0 0" xyz="0 0 0"/>
17 </c o l l i s i o n >
18 <i n e r t i a l >

86 6. ROBOT MODELING USING XACRO

19 <mass value="1"/>
20 <i n e r t i a ixx ="1.0" ixy ="0.0" i x z ="0.0" iyy ="1.0" i y z ="0.0" i z z ="1.0"/>
21 </ i n e r t i a l >
22 </l ink>
23 </xacro : macro>

We are ready to define something that can be reused several time to build
a robot model. In pan-tilt robot we had two joints and two links. Try to
define general elements that can be instantiated multiple times to build a
robot with multiple DOF.

Let’s define a macro to create a joint for our robot:

1 <xacro : macro name="pan_t i l t_jo in t " params="name type parent ch i l d ∗ o r i g i n ∗ ax i s ">
2 <j o i n t name="${name}" type="${ type}">

Our macro is called pan_tilt_joint. Be careful, don’t confuse the macro
name with the element name. This macro block has multiple parameters
that can be distinguish between two classes:

• Simple parameters: just a string or a numerical value, like the name
or the type of the joint. We also want to specify the links connected
by this joint.

• Block parameters: in order to insert custom blocks, like the center
of the joint or its rotation axes, we must pass a block adding the *
symbol before the parameter name.

1 <parent l i n k="${ parent }" />
2 <ch i l d l i n k="${ ch i l d }" />
3 <xacro : in s e r t_b lock name=" o r i g i n " />
4 <xacro : in s e r t_b lock name=" ax i s " />
5 <l im i t e f f o r t ="300" v e l o c i t y ="0.1" lower="−3.14" upper="3.14"/>
6 <dynamics damping="50" f r i c t i o n ="1"/>
7 </jo in t >
8 </xacro : macro>

At this point, is clear that we can instantiate this block customizing its main
characteristics. Let’s see the definition of the macro link:

1 <xacro : macro name="pan_t i l t_l ink " params="name ∗geometry ∗ o r i g i n ">
2 <l i n k name="${name}">
3 <vi sua l >
4 <xacro : in s e r t_b lock name="geometry " />
5 <xacro : in s e r t_b lock name=" o r i g i n " />
6 <mate r i a l name="red">
7 <co l o r rgba="0 0 1 1"/>
8 </mater ia l>

87

9 </v i sua l >
10 <c o l l i s i o n >
11 <xacro : in s e r t_b lock name="geometry " />
12 <xacro : in s e r t_b lock name=" o r i g i n " />
13 </c o l l i s i o n >
14 <i n e r t i a l >
15 <mass value="1"/>
16 <i n e r t i a ixx ="1.0" ixy ="0.0" i x z ="0.0" iyy ="1.0" i y z ="0.0" i z z ="1.0"/>
17 </ i n e r t i a l >
18 </l ink>
19 </xacro : macro>

Finally, we can close the content of this file terminating the robot tag:

1 </robot>

As for the file defining the whole robot structure using such macro, here is
reported its content:

1 <robot name="pan_t i l t " xmlns : xacro="http :// wik i . ro s . org / xacro">
2 <xacro : i n c lude f i l ename="$ (f i nd r l_robot_descr ipt ion_pkg)/ urdf /pan_tilt_macro . xacro " />

First of all, we must include the pan_tilt_macro.xacro file to use its macro.
Then, we can start to define the structure of the pan-tilt robot:

1 <xacro : base_link_macro
2 base_link_name="base_l ink">
3 </xacro : base_link_macro>

As already stated, the base_link of the robot accepts as parameter only
the name of the link.

We can start including our first joint: the pan_joint. Here is also clear
the difference between simple and block parameters.

1 <xacro : pan_t i l t_jo in t
2 name="pan_joint "
3 type=" r evo lu t e "
4 parent="base_l ink "
5 ch i l d="pan_link">
6 <o r i g i n xyz="0 0 0 . 1 " />
7 <ax i s xyz="0 0 1"/>
8 </xacro : pan_t i l t_jo int>

Then we can instantiate the pan_link and the tilt joint and link:

1 <xacro : pan_t i l t_l ink name="pan_link">
2 <geometry>
3 <cy l i nd e r l ength ="0.4" rad iu s ="0.04"/>
4 </geometry>
5 <o r i g i n xyz="0 0 0" rpy="0 0 0.09"/>

88 6. ROBOT MODELING USING XACRO

6 </xacro : pan_ti l t_l ink>
7

8 <xacro : pan_t i l t_jo in t
9 name=" t i l t _ j o i n t "

10 type=" r evo lu t e "
11 parent="pan_link "
12 ch i l d=" t i l t _ l i n k ">
13 <o r i g i n xyz="0 0 0 . 2 " />
14 <ax i s xyz="0 1 0"/>
15 </xacro : pan_t i l t_jo int>
16

17 <xacro : pan_t i l t_l ink name=" t i l t _ l i n k ">
18 <geometry>
19 <cy l i nd e r l ength ="0.4" rad iu s ="0.06"/>
20 </geometry>
21 <o r i g i n xyz="0 0 0" rpy="0 1 .5 0.0"/>
22 </xacro : pan_ti l t_l ink>
23 </robot>

So we have seen how he xacro definition improves the code readabil-
ity and reduces the number of lines compared to URDF. However, all ROS
software, like RViz robot model plugin, robot_state_publisher, and so on
require an URDF file.

After designing the xacro file, we can use the following command to
convert it to a URDF file:

$ rosrun xacro xacro pan_tilt.xacro > pan_tilt_generated.urdf

Be careful to refer to your main xacro file, and not to that one containing
the definition of the macro blocks.

Finally, to display the xacro model in RViz, you can create another
launch file in the rl_robot_description_pkg package referring to the new
URDF file generated by the xacro:

1 <?xml ve r s i on ="1.0" ?>
2 <launch>
3 <arg name="model " />
4 <param name=" robot_desc r ip t i on " t e x t f i l e ="$ (f i nd r l_robot_descr ipt ion_pkg)/ urdf / pan_ti l t_generated . urdf " />
5 <param name="use_gui " va lue=" true "/>
6 <node name=" jo in t_s ta t e_pub l i she r " pkg=" jo in t_s ta t e_pub l i she r " type=" jo in t_s ta t e_pub l i she r " />
7 <node name="robot_state_publ i sher " pkg=" robot_state_publ i sher " type=" robot_state_publ i sher " />
8 <node name=" r v i z " pkg=" r v i z " type=" r v i z " args="−d $ (f i nd r l_robot_descr ipt ion_pkg)/ urdf . r v i z " r equ i r ed=" true " />
9 </launch>

Let’s call this file display_xacro.launch and execute it with the following
command:

89

$ roslaunch rl_robot_description_pkg display_xacro.launch

In the rest of the course we mainly consider xacro file to model our robots.

90 6. ROBOT MODELING USING XACRO

7

Simulation in robotics

Simulate robots represents a fundamental step in the development of robotic
applications for several reasons. First of all, simulation helps developers to
test different solutions to perform a task without risks. Also, simulation is
useful when we have to test our algorithms and we haven’t access to the
robotic hardware.

Several features are nice of have in a simulation environment. In partic-
ular, good robotic simulators enable a natural and realistic behavior of our
robots, both into the dynamics reaction of the world objects and the motion
of the robot. Also it’s very important that very few changes must be made in
your programs to move it from simulation to the real robot. ROS supports
different robotic simulation tools, we will discuss about Coppelia Sim and
Gazebo.

7.0.1 Coppelia Sim

Coppelia Sim is a multi-platform robotic simulator developed by Coppelia
Robotics. It offers many simulation models of popular industrial and mo-
bile robots ready to be used, and different functionalities that can be easily
integrated and combined through a dedicated API. In addition, it can oper-
ate with ROS using a communication interface that allows us to control the
simulation scene and the robots via topics and services. Coppelia Sim can
be used as a standalone software, while an external plugin must be installed
to work with ROS.

This simulator born from the V-REP (Virtual Robot Experimentation
Platform) project. Coppelia Sim, with integrated development environ-
ment, is based on a distributed control architecture: each object/model can
be individually controlled via an embedded script, a plugin or a ROS node,
a remote API client, or a custom solution. This makes Coppelia Sim very
versatile and ideal for multi-robot applications. Controllers can be written
in C/C++, Python, Java, Lua or Matlab

91

92 7. SIMULATION IN ROBOTICS

7.0.2 Starting with Coppelia Sim

The first thing to do to start interfacing with Coppelia Sim is install it.
Actually, you need only to download and extract it in a desired folder. If
you are using Ubuntu 20.04 download the last version of Coppelia Sim at
this link: https://coppeliarobotics.com/files/CoppeliaSim_Edu_V4_
2_0_Ubuntu20_04.tar.xz. Then extract it in your development folder.

Consider that, CoppeliaSim is not a free software. It is under a commer-
cial license. We can use in this course thanks to our educational affiliation.
So, just download the educational version of CoppeliaSim.

Could be convenient to rename the Coppelia Sim directory with an
intuitive name:

$ mv CoppeliaSim_Edu_V4_2_0_Ubuntu20_04.tar.xz CoppeliaSim

To start Coppelia Sim you need to start the coppeliaSim script into
the simulator folder:

$ cd CoppeliaSim
$./coppeliaSim

It’s highly probable that the first time you start the simulator you will
get the following error:

./coppeliaSim: error while loading shared libraries:
liblua5.1.so: cannot open shared object file: No such
file or directory

You should be able to recognize this error: coppeliaSim is not able to
fine a shared library called liblua. This could happen for two reasons.
Or this library is not installed in your system or coppeliaSim doesn’t know
where to search for it. In this case, you need to install such library:

$ sudo apt-get install liblua5.1.0

After installed such library, you can retry to launch the CoppeliaSim.
However you should get the following error:

$./coppeliaSim: /usr/lib/x86_64-linux-gnu/libQt5Core.so.5:
version ‘Qt_5.12’ not found (required by ./coppeliaSim)

Another error related to the libraries. These libs are included into the
simulator folder, so in this case, we need to inform Linux where to find
them. We need to properly set the well known environment variable called:
LD_LIBRARY_PATH. The must include the CoppeliaSim folder to the other
directory already contained in it.

https://coppeliarobotics.com/files/CoppeliaSim_Edu_V4_2_0_Ubuntu20_04.tar.xz
https://coppeliarobotics.com/files/CoppeliaSim_Edu_V4_2_0_Ubuntu20_04.tar.xz

93

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/CoppeliaSim

Of course, to make this modification permanent, you must to add this
line to your .bashrc file.

We are now ready to start using CoppeliaSim running the starting script:

./coppeliaSim

We are now ready to start interfacing ROS with CoppeliaSim.

7.0.3 CoppeliaSim - ROS interface

In previous versions of CoppeliaSim, when it was called V-REP, the interface
with ROS was developed by means a plugin called RosPlugin.

Nowadays, the ROS Interface is part of the CoppeliaSim API framework.
Make sure not to mix up the ROS Interface with the RosPlugin, which is an
older, deprecated interface in CoppeliaSim. The ROS Interface duplicates
the C/C++ ROS API with a good fidelity. This makes it the ideal choice
for very flexible communication via ROS, but might require a little bit more
insight on the various messages and the way ROS operates.

CoppeliaSim can act as a ROS node that other nodes can communicate
with via ROS services, ROS publishers and ROS subscribers. The ROS
Interface functionality in CoppeliaSim is enabled via a plugin: libsimEx-
tROSInterface.*. The plugins can easily be adapted to your own needs.
The plugins are loaded when CoppeliaSim is launched, but the load opera-
tion will only be successful if roscore was running at that time. Make sure
to inspect CoppeliaSim’s console window or terminal for details on plugin
load operations.

To check if ROS interface is correctly loaded, run a roscore and, when
the simulator starts, check into your linux shell for the following lines:

Plugin ’ROSInterface’: loading...
Plugin ’ROSInterface’: load succeeded.

If you are not able to see such lines, you must configure your system
copying the ROS interface into the main directory of CoppeliaSim. After
joined the simulator directory, use the following command

$ cp compiledRosPlugins/libsimExtROSInterface.so .

Now you can restart CoppeliaSim.

7.0.4 CoppeliaSim GUI

A comprehensive documentation about the CoppeliaSim GUI can be found
at this link https://www.coppeliarobotics.com/helpFiles/en/userInterface.
htm. Please, refer to this page if you are not able to find elements considered
in this lesson.

https://www.coppeliarobotics.com/helpFiles/en/userInterface.htm
https://www.coppeliarobotics.com/helpFiles/en/userInterface.htm

94 7. SIMULATION IN ROBOTICS

7.0.5 Programming ROS scene with CoppeliaSim

This section discusses how to start programming using ROS API in CoppeliaSim.
Start opening a new scene of CoppeliaSim: by default the simulator opens a
new scene at its start, otherwise this can be also made using the menu bar
on the top of the windows [File -> New scene]. To start programming
a robot or a device into the simulation scene, you need to add it into the
scene hierarchy.

The goal of our first example is just to understand how ROS plumb-
ing capabilities can be used into CoppeliaSim. So, just include a new
object with a primitive shape: right click on the simulation scene then:
[Add -> Primitive Shape -> Plane].

In our case, CoppeliaSim works thanks to a set of scripts based on Lua
programming language that must be associated to scene objects. So, to
enable ROS functionalities into CoppeliaSim, we need to call ROS API into
such scripts.

Let’s crate our first Lua script: right click on the just create object,
then: Add -> Associated child script -> Not threaded. The main
difference between this two kind of scripts is that threaded scripts are run
into separate threads, so have their framerate and so on. Differently, not
thread scripts have a series of function blocks that are called on particular
events. A new child script has this form:

1 f unc t i on sy sCa l l_ in i t ()
2 −− do some i n i t i a l i z a t i o n here
3 end
4

5 f unc t i on sysCa l l_actuat ion ()
6 −− put your ac tuat i on code here
7 end
8

9 f unc t i on sysCa l l_sens ing ()
10 −− put your s en s ing code here
11 end
12

13 f unc t i on sysCal l_cleanup ()
14 −− do some clean−up here
15 end

Following the comments into the script, we have 4 main function blocks:

• sysCall_init(): called only when the simulation starts. Here we can
initialize our stuff

• sysCall_actuation(): called following the framerate of the simula-
tion. Used to actuate the robotic joints

95

• sysCall_sensing(): called when the sensors of your simulation scene
are updated.

• sysCall_cleanup(): called when your scene is stopped.

So, our goal is to create a script publishing an integer value. Later, we will
create another object with another script that reads such value printing it
into the status bar.

Starting with the initialization function, we firstly check if the ROS
plugin is properly working. This is made checking the value of the simROS
variable:

1 i f simROS then
2 . . .
3 e l s e
4 . . .
5 end

simROS is true if the ROS plugin is working. In this case, we can initialize
the publisher:

1 i f simROS then
2 pr in t ("ROS i n t e r f a c e c o r r e c t l y loaded ")
3 pub=simROS . adv e r t i s e (’ / number ’ , ’ std_msgs/ Int32 ’)
4 e l s e
5 pr in t ("< font c o l o r=’#F00’>
6 ROS i n t e r f a c e was not found . Cannot run .</ font>@html ")
7 end

As for the publishing part, we can fill the actuation function with the fol-
lowing code:

1 f unc t i on sysCa l l_actuat ion ()
2 int_data = {}
3 int_data [’ data ’] = 13
4 simROS . pub l i sh (pub , int_data)
5 end

In this function we declare a new variable, called int_data. We fill such
variable thanks to the knowledge about the structure of the message that
we want to publish: we know that the std_msgs/Int32 message has a field
called data, so we assign this field in the following way:

1 int_data [’ data ’] = value

Differently, if we commit some mistakes in the variable definition (referring
to an unknown data field for example), we could have an error similar to
this:

96 7. SIMULATION IN ROBOTICS

Lua runtime error: [string "CHILD SCRIPT Plane"]:13:
read__std_msgs__Int32: unexpected key: qdata
(simROS.publish @ ’RosInterface’ plugin)
stack traceback:
[C]: in function ’publish’
[string "CHILD SCRIPT Plane"]:13: in function

Now our script is complete. We can use the play button on the simulator
bar and check the result using the rostopic echo command.

Figure 7.1: Kuka LBR iiwa 7 in CoppeliaSim

We are also ready to write our subscriber. Just create another basic
object and add a not threaded script. Like in the publisher example, we
check if ROS plugin is properly working. Then we declare a subscriber:

1 f unc t i on sy sCa l l_ in i t ()
2 i f simROS then
3 pr in t ("ROS i n t e r f a c e c o r r e c t l y loaded ")
4 sub=simROS . sub s c r i b e (’/ number ’ , ’ std_msgs/ Int32 ’ , ’ intMessage_cal lback ’)
5 e l s e
6 pr in t ("< font c o l o r=’#F00’>ROS i n t e r f a c e was not found . Cannot run .</ font>@html ")
7 end
8 end

97

The subscriber function needs for three arguments: the topic name, the
topic type and the callback function. In the following the callback function
si reported.

1 f unc t i on intMessage_cal lback (msg)
2 pr in t (" data " , msg [" data "])
3 end

In this function (that we added to our script), we just get the data field of
the ROS topic in order to print its value into the status bar. We can save this
scene using the menu bar of the simulator window: File -> Save scene.
Extensions for CoppeliaSim scene is .ttt, let’s all this scene: pub_sub.ttt
and try something of more complex.

Figure 7.2: Kuka with vision sensor

A very useful thing allowed by simulators is the possibility to simulate
sensors over robots. We are going to implement two examples:

• : we will add a vision sensor on a seven degree of freedom manipulator
and publish its content over ROS network.

98 7. SIMULATION IN ROBOTICS

• Example 2: we will implement a ROS node to control the robotic
joints.

Example 1

Vision sensors are commonly used in robotics to implement advanced ap-
plications. They are cheap and allow a robot to be aware about the its
working environment. Let’s start preparing our scene. Open a new scene
and select a robot to import into the environment. For example, you can
choose the Kuka LBR iiwa 7 as show in Fig. 7.1. The Kuka LBR iiwa 7
model already contains a script demonstrating its motion capabilities. Just
delete that script and attach a new vision sensor to its end effector:

• To spawn a new robot in the simulation scene, select it from the Model
browser (in our case, robots->non mobile) and drop it into the scene

• To remove the associated script, right click on robot model [Edit ->
remove -> associated child script].

• To add a vision sensor, unfold the robot components and select the
last link of the robot (LBR_iiwa_7_R800_link8). Click with the right
button of the mouse on its name and select [Add -> Vision sensor ->
Prespective View].

• Could also happen that the model is not placed on the correct link.
To solve this just drug and drop it in the correct location into the
scene hierarchy. You scene hierarchy must be similar to the one show
in Fig. 7.2.

• Use the object/item shift button to correctly attach the sensor on the
end effector of the robot.

• You can also modify the camera parameters to have more resolution
of field of view.

• Finally, add the non-threaded script to manage the vision sensor and
the robot motion as well.

Here the contents of the script. Start with the initialization function:

1 f unc t i on sy sCa l l_ in i t ()
2 j o in tHand l e s={−1,−1,−1,−1,−1,−1,−1}
3 f o r i =1 ,7 ,1 do
4 j o in tHand l e s [i]=sim . getObjectHandle (’ LBR_iiwa_7_R800_joint ’ . . i)
5 end

We need object handlers to control the behavior of a joint. In our simulation
we have seven joints called LBR_iiwa_7_R800_joint0, LBR_iiwa_7_R800_joint1,

99

and so on. We can initialize seven different handlers. To get elements from
the simulation scene, you must used the sim object, that is declared by
default into the Lua script.

1 sim . s e t Jo in tTarg e tPo s i t i on (jo in tHand l e s [1] , 0 . 0)
2 sim . s e t Jo in tTarg e tPo s i t i on (jo in tHand l e s [2] , 0 . 0)
3 sim . s e t Jo in tTarg e tPo s i t i on (jo in tHand l e s [3] , 0 . 0)
4 sim . s e t Jo in tTarg e tPo s i t i on (jo in tHand l e s [4] , −1.57)
5 sim . s e t Jo in tTarg e tPo s i t i on (jo in tHand l e s [5] , 0 . 0)
6 sim . s e t Jo in tTarg e tPo s i t i on (jo in tHand l e s [6] , 0 .27)
7 sim . s e t Jo in tTarg e tPo s i t i on (jo in tHand l e s [7] , −1.57)

The default position of this robot is called candle position. All its joints
are set to 0. Just use the setJointTargetPosition function to find a
convenient position for our task. This function accepts as input the handler
of the joint and the target position in radians. We need a handle also for
the vision sensor:

1 v i s i on_senso r = sim . getObjectHandle (’ Vis ion_sensor ’)

Then, we are ready to declare our publisher of the vision sensor:

1 i f simROS then
2 pr in t ("< font c o l o r=’#0F0’>ROS i n t e r f a c e was found .</ font>@html ")
3 img_pub = simROS . adv e r t i s e (’ / image ’ , ’ sensor_msgs/Image ’)

To advertise a data om Lua, the advertise function accepts two input, the
name of the topic and its type.

1 −− t r e a t u int8 ar rays as s t r i n g s (much f a s t e r , t a b l e s / ar rays are kind o f slow in Lua)
2 simROS . publ i sherTreatUInt8ArrayAsStr ing (img_pub)
3 e l s e
4 pr in t ("< font c o l o r=’#F00’>ROS i n t e r f a c e was not found . Cannot run .</ font>@html ")
5 end
6 end

In the particular case of the image type we can ask for the encoding type
of the pixel of the image. We require to consider the full list of the uint8
elements as a string.

Finally, in the sensing part we can manage the vision sensor data, in
order to fit them in a ROS message and publish the camera data over ROS
network. Before to continue let’s analyze the sensor_msgs::Image data
type. As usual, see the structure of the message using the rosmsg command:

$ rosmsg show sensor_msgs/Image

Here is reported its content:

std_msgs/Header header
uint32 seq

100 7. SIMULATION IN ROBOTICS

time stamp
string frame_id
uint32 height
uint32 width
string encoding
uint8 is_bigendian
uint32 step
uint8[] data

We have some information about the image and the data type, like its en-
coding and the dimension of the image (height and width). Regarding
image pixel, they are stored into a one dimensional vector. The dimension
of this vector is depends from the resolution of the image.

1 f unc t i on sysCa l l_sens ing ()
2 l o c a l data ,w, h=sim . getVis ionSensorCharImage (v i s i on_senso r)

We firstly get data by the vision sensor. In particular, some of return value
of the getVisionSensorCharImage function are the pixel data and the di-
mension of the image. As already made for the std_msgs/Int32 example,
fill the image data structure and publish it.

1 d={}
2 d [’ header ’]={ stamp=simROS . getTime () , frame_id="camera_frame "}
3 d [’ he ight ’]=h
4 d [’ width ’]=w
5 d [’ encoding ’]= ’ rgb8 ’
6 d [’ i s_bigendian ’]=1
7 d [’ step ’]=w∗3
8 d [’ data ’]= data
9 simROS . pub l i sh (img_pub ,d)

10 end

After start the simulation, you can check that the image topic is present
in your ROS system. We are also ready to use another tool from ROS:
image_view. To display the content of a ROS image data, you can use the
image_view package:

$ rosrun image_view image_view image:=/image

You need also to specify the topic name where the image is store image:=TOPIC_NAME.
This command will open a new window displaying the topic image. You also
can obtain the same result using the rqt_image_view plugin. Save this scene
with a desired name and let’s continue implementing our second example to
move of the joint of the robot.

101

Example 2

In this example our goal is to move the first link of the kuka robot to
implement the pan behavior already seen in this course. We will also need
to modify the CoppeliaSim script to link the information used by the ROS
package. In particular we need to read the position of the joint to control,
and to set the desired command. Let’s modify the Lua script adding a
publisher and a subscriber to such robot elements. In the initialization part
of the script add these lines:

1 jp_pub = simROS . adv e r t i s e (’ / i iwa / j0 /pos ’ , ’ std_msgs/Float32 ’)
2 −− t r e a t u int8 ar rays as s t r i n g s (much f a s t e r , t ab l e s / ar rays are kind o f slow in Lua)
3 sub = simROS . sub s c r i b e (’/ i iwa / j0 /cmd ’ , ’ std_msgs/Float32 ’ , ’ jCmd_callback ’)

As for the callback, it can be implemented in the following way:

1 f unc t i on jCmd_callback (msg)
2 sim . s e t Jo in tTarg e tPo s i t i on (jo in tHand l e s [1] , msg [’ data ’])
3 end

So, we want only to control the first joint of the robot. After checked that
everything is properly working, using the ROS tools that we already learned,
create a ROS package to store our code:

$ roscd && cd ../src
$ catkin_create_pkg pan_control roscpp std_msgs tf

We also include the URDF of the robot taken by the kuka ROS development
package, you will find it into the urdf directory of the course material. We
will use this model for future exercises. Create the source code to implement
the pan behavior. We also take advantage of this example to see a conve-
nient structure for our robot control programs. The proposed structure
uses boost::thread to manage the parallel execution of different section
the code. In particular using boost::thread implementation, we can easily
define class member functions as thread that share with all the other thread
of the program the variable space.

Let’s start discussing the pan_control.cpp file:

1 #inc lude " ro s / ro s . h "
2 #inc lude " std_msgs/Float32 . h "
3 #inc lude " boost / thread . hpp "
4 us ing namespace std ;

As you can see, we include two new headers: the one to publish the joint
command as a Float32 ROS message and the one to use the boost thread.

1 c l a s s PAN_MOTION {
2 pub l i c :
3 PAN_MOTION() ;

102 7. SIMULATION IN ROBOTICS

4 void c t r l_ loop () ;
5 void joint_data_sub (std_msgs : : Float32ConstPtr) ;
6 void run () ;
7 pr i va t e :
8 ro s : : NodeHandle _nh ;
9 ro s : : Pub l i she r _j_cmd_pub ;

10 ro s : : Subsc r ibe r _j_pos_sub ;
11 double _left_l im ;
12 double _right_lim ;
13 f l o a t _cj_pos ;
14 double _p;
15 bool _f irst_jpos_data ;
16 } ;

In the definition of the class we have some variables that can be passed to
our node using the ROS parameters server. In particular:

• _left_lim: is the angle limit in the left rotation of the pan motion

• _right_lim: is the angle limit in the right rotation of the pan motion

• _p: is a proportional gain

We initialize the variables in the constructor of the class, along with the
publisher and subscriber:

1 PAN_MOTION: :PAN_MOTION () {
2 _j_cmd_pub = _nh . adve r t i s e < std_msgs : : Float32 > ("/ i iwa / j0 /cmd" , 0) ;
3 _j_pos_sub = _nh . sub s c r i b e ("/ i iwa / j0 /pos " , 0 , &PAN_MOTION: : joint_data_sub , t h i s) ;
4

5 _nh . param(ros : : this_node : : getName () + "/ l e f t_ l im " , _left_lim , 1 . 2) ;
6 _nh . param(ros : : this_node : : getName () + "/ r ight_l im " , _right_lim , −1.2) ;
7 _nh . param(ros : : this_node : : getName () + "/p " , _p, 0 . 0 0 5) ;
8

9 _first_jpos_data = f a l s e ;
10 }

Since the parameters are loaded into the ROS parameter server in relation
with the node name, we use the function ros::this_node::getName() to re-
trieve the name of the node.

Regarding the topic subscriber, we just save the value of the joint angle
into a class variable and inform our control program that the information
about the joint position are now available:

1 void PAN_MOTION: : joint_data_sub (std_msgs : : Float32ConstPtr j_pos) {
2 _cj_pos = j_pos−>data ;
3 _ f i r s t_jpos_data = true ;
4 }

103

Finally, we are ready to run the main control loop:

1 void PAN_MOTION: : c t r l_ loop () {
2

3 cout << "Pan motion c on t r o l l e r , move your j o i n t from " << _left_l im << " to : " << _right_lim << endl ;
4

5 whi le (! _f irst_jpos_data) s l e e p (1) ;
6 ROS_INFO(" Jo int p o s i t i o n i n f o a r r i v ed ! ") ;

Before commanding the robot, we need to wait to know the current position
of its joint. So, we wait until the first message in the relative callback is not
arrived.

1 double set_point = _left_l im ;
2 std_msgs : : Float32 cmd ;
3 double r e f ;
4 f l o a t th r e sho ld = 0 . 0 1 ;
5 ro s : : Rate r (1 0 0) ;
6 r e f = _cj_pos ;

Than we can initialize some stuff like the control rate (100Hz) and the
current position of the joint before starting to control it. The set_point
variable defines the end point of the pan motion. In this context, we assume
that the first rotation must be made in the left direction.

1 whi le (ro s : : ok ()) {
2 f l o a t e = set_point − _cj_pos ;
3 whi le (f abs (e) > thre sho ld) {
4 e = set_point − _cj_pos ;
5 r e f = r e f + e∗_p;
6 cmd . data = r e f ;
7 _j_cmd_pub . pub l i sh (cmd) ;
8 r . s l e e p () ;
9 }

In the control routine, we calculate the error between the desired setpoint
and the current position of the joint. Then, we just implement a simple
P controller. The motion along a certain direction is considered completed
when this error is lesser than a given threshold. Finally, we have to updated
the setpoint:

1 set_point = (set_point == _left_l im) ? _right_lim : _left_l im ;
2 }
3 }

Our code is quite complete. However, how could we call the control loop?
We added in the class definition a run() function:

1

104 7. SIMULATION IN ROBOTICS

2 void PAN_MOTION: : run () {
3 boost : : thread ctr l_loop_t(&PAN_MOTION: : ctr l_loop , t h i s) ;
4 ro s : : sp in () ;
5 }

We call this function in the main of our application. The aim of this function
is to start all the thread implemented in our system and finally, run the
spin function in order to link the callbacks of our ROS node with the ROS
network. We also use the spin to implement an infinite loop.

You can test this program starting the simulation on CoppeliaSim and
then running this script with a proper launch file that also loads the needed
parameters into the ROS parameter server.

7.0.6 Exercise 7

Create a new ROS package to publish the tf tree of the kuka iiwa simulated
on CoppeliaSim.

8

Gazebo ROS

Gazebo is a multi-robot simulator for complex indoor and outdoor robotic
simulations. We can simulate complex robots, robotic sensors, and a variety
of 3D objects. Gazebo already has simulation models of popular robots,
sensors, and 3D objects in its repository (https://bitbucket.org/osrf/
gazebo_models/). We can directly use these models without having to
create new ones. Gazebo has a good interface to ROS, which exposes the
whole control of the simulation scene. We can install Gazebo without ROS,
and we should install the ROS-Gazebo interface to communicate from ROS
to Gazebo.

The default version installed from Noetic ROS is Gazebo 11 and it is
interfaced with ROS thanks to the following packages:

• gazebo_ros_pkgs: This contains wrappers and tools for interfacing
ROS with Gazebo

• gazebo-msgs: This contains messages and service data structures for
interfacing with Gazebo from ROS

• gazebo-plugins: This contains Gazebo plugins for sensors, actuators,
and so on.

• gazebo-ros-control: This contains standard controllers to enable
the communication between ROS and Gazebo

To check if Gazebo is properly installed use the following commands:

$ roscore
$ rosrun gazebo_ros gazebo

These commands will open the Gazebo GUI.
In future lessons, we will see what is behind the Gazebo ROS environ-

ment and how robot models are programmed to communicate with the ROS
network. However, let’s start discussing gazebo interface.

105

https://bitbucket.org/osrf/gazebo_models/
https://bitbucket.org/osrf/gazebo_models/

106 8. GAZEBO ROS

After launched gazebo using the rosrun command, some topics are pub-
lished containing information about the simulation scene and the simulated
models. In particular, you can check the topic /gazebo/model_states that
contains geometrical information about the model spawned into the scene.
The types of topics published by gazebo are part of the gazebo_ros mes-
sages. In the model_states case, the type of the message is here reported:

string[] name
geometry_msgs/Pose[] pose

geometry_msgs/Point position
float64 x
float64 y
float64 z

geometry_msgs/Quaternion orientation
float64 x
float64 y
float64 z
float64 w

geometry_msgs/Twist[] twist
geometry_msgs/Vector3 linear

float64 x
float64 y
float64 z

geometry_msgs/Vector3 angular
float64 x
float64 y
float64 z

The size of this message depends on the number of the model active in
the simulated environment. Remember that both robots and objects are
models. Each model is characterized by its position and velocity. This topic
contains the exact pose of your models like a sort of oracle. For this reason,
such information typically is used only for ground truth or debug, since in
the real world no one can inform your programs about the exact pose of an
object (also the GPS is characterized by measure error).

A fundamental step of Gazebo programming regards the configuration
of your robot to work with the simulation. In CoppeliaSim this requires
much more effort, for this reason, we have not discussed how to import your
robot in the simulation. Differently, with Gazebo this step is more simple
and will help us to deeply understand how to interact with the robot or how
to import new robots in the Gazebo world.

107

8.0.1 Configure a robotic arm for Gazebo simulation

In this section, we will discuss how to modify the xacro model file of a 7
DOF manipulator to properly work in Gazebo. To this aim, consider the
following xacro files modeling a kuka iiwa industrial robot:

• The main file of the kuka robot is the kuka_iiwa.xacro

1 <?xml ve r s i on ="1.0"?>
2 <robot name="kuka_iiwa "
3 xmlns : xacro="http ://www. ros . org /wik i / xacro">
4 <xacro : i n c lude f i l ename=
5 " $ (f i nd i iwa_desc r ip t i on)/ urdf / u t i l i t i e s . xacro " />
6 <xacro : i n c lude f i l ename="$ (f i nd kuka_iiwa_support)/ urdf /
7 kuka_iiwa_macro . xacro "/>
8 <xacro : arg name=
9 " robot_name " d e f au l t=" i iwa "/>

10 <l i n k name="world"/>
11

12 <xacro : i iwa7 robot_name="$ (arg robot_name) " parent="world">
13 <o r i g i n xyz="0 0 0" rpy="0 0 0" />
14 </xacro : i iwa7>
15 </robot>

In this file we include two additional xacro files, one where the macro
are defined and another one in which are stored some mathematical
utilities.
The robot model accepts the name of the robot as input parameter
when it is converted in a URDF.

• The macro block that can be used to build the iiwa robot are contained
into the the kuka_iiwa_macro.xacro file. We briefly see only a small
part of this file, since it is very long. The authors of this robot preferred
to define a separate macro block for each joint and link of the robot.
However, the full content of this file can be found in the urdf folder of
the kuka_iiwa_support package provided with the course material.

1 <xacro : macro name=" i iwa7 " params="parent robot_name ∗ o r i g i n ">
2 <!−− j o i n t between {parent } and link_0−−>
3 <j o i n t name="${parent }_${robot_name}_jo int " type=" f i x ed ">
4 <xacro : in s e r t_b lock name=" o r i g i n "/>
5 <parent l i n k="${ parent }"/>
6 <ch i l d l i n k="${robot_name}_link_0"/>
7 </jo in t >
8 <l i n k name="${robot_name}_link_0">
9 <i n e r t i a l >

108 8. GAZEBO ROS

10 <o r i g i n xyz="−0.1 0 0 . 07 " rpy="0 0 0"/>
11 <mass value="5"/>
12 <i n e r t i a ixx ="0.05" ixy ="0" i x z ="0" iyy ="0.06" i y z ="0" i z z ="0.03" />
13 </ i n e r t i a l >
14 <vi sua l >
15 <o r i g i n xyz="0 0 0" rpy="0 0 0"/>
16 <geometry>
17 <mesh f i l ename="package :// i iwa_desc r ip t i on /meshes/ i iwa7 /
18 v i s u a l / l ink_0 . s t l "/>
19 </geometry>
20 <mate r i a l name="Grey"/>
21 </v i sua l >
22

23 <c o l l i s i o n >
24 <o r i g i n xyz="0 0 0" rpy="0 0 0"/>
25 <geometry>
26 <mesh f i l ename="package :// i iwa_desc r ip t i on /meshes/ i iwa7 /
27 c o l l i s i o n / l ink_0 . s t l "/>
28 </geometry>
29 <mate r i a l name="Grey"/>
30 </c o l l i s i o n >
31 </l ink>
32

33 <j o i n t name="${robot_name}_joint_1 " type=" r evo lu t e ">
34 <parent l i n k="${robot_name}_link_0"/>
35 <ch i l d l i n k="${robot_name}_link_1"/>
36 <o r i g i n xyz="0 0 0 . 15 " rpy="0 0 0"/>
37 <ax i s xyz="0 0 1"/>
38 <l im i t lower="${−170 ∗
39 PI / 180}" upper="${170 ∗ PI / 180}"
40 e f f o r t ="${max_effort }" v e l o c i t y="${max_velocity }" />
41 </jo in t >
42 <l i n k name="${robot_name}_link_1">
43 . . .

So, such files are quite similar to the ones we saw in Lesson 6. One difference
regards how the geometry and the collision of the links are specified. In this
case, the shape of a link is directly taken by its CAD file (the stl file). Let’s
see what happens if we try to directly spawn in a Gazebo scene this robot
without any modification.

Let’s start creating a proper launch file to do this work. First of all, we
should specify some arguments that are used by Gazebo simulation:

1 <arg name="paused " d e f au l t=" f a l s e "/>

109

2 <arg name="use_sim_time " d e f au l t=" t rue "/>
3 <arg name="gui " d e f au l t=" t rue "/>
4 <arg name="head l e s s " d e f au l t=" f a l s e "/>
5 <arg name="debug " d e f au l t=" f a l s e "/>
6 <arg name="robot_name " d e f au l t="kuka_iiwa"/>

Then, to start gazebo we use a launch file included into another package:
the gazebo_ros package. To include a launch file in another launch file, we
should use the tag include:

1 <!−− We resume the l o g i c in empty_world . launch −−>
2 <inc lude f i l e ="$ (f i nd gazebo_ros)/ launch/empty_world . launch">
3 <arg name="debug " va lue="$ (arg debug) " />
4 <arg name="gui " va lue="$ (arg gui) " />
5 <arg name="paused " value="$ (arg paused)"/>
6 <arg name="use_sim_time " value="$ (arg use_sim_time)"/>
7 <arg name="head l e s s " va lue="$ (arg head l e s s)"/>
8 </inc lude>

Finally, we can load the robot model in the ROS parameter server:

1 <!−− Load the URDF into the ROS Parameter Server −−>
2 <param name=" robot_desc r ip t i on " command="
3 $ (f i nd xacro)/ xacro ’ $ (f i nd kuka_iiwa_support)/ urdf /kuka_iiwa . xacro ’ " />

And use the urdf_spawner node to spawn (make appear) the robot in the
simulation scene.

1 <!−− Run a python s c r i p t to the send a s e r v i c e c a l l to gazebo_ros to
2 spawn a URDF robot −−>
3 <node name="urdf_spawner " pkg="gazebo_ros "
4 type="spawn_model " respawn=" f a l s e " output=" sc r e en "
5 args="−urdf −model kuka_iiwa −param robot_desc r ip t i on "/>

Fig. 8.1 shows what happen if we try to use this launch file:

$ roslaunch kuka_iiwa_support gazebo.launch

What is happening is that the robot is not able to contrast the gravity, since
it has no motor controller defined in its model. In few words, the robot can
not be actuated. So, what we will do is to modify the xacro file of the robot
to add a set of controllers.

Just duplicate the xacro file renaming the new file as kuka_iiwa_ctrl.xacro
and kuka_iiwa_macro_ctrl.xacro respectively. One way to actuate the
robot is using ROS controllers. To do this, we should define one thing called
<transmission>. We will define a <transmission> element for each joint
of the robot.

Here is the macro to define new transmissions:

110 8. GAZEBO ROS

Figure 8.1: Kuka iiwa in ROS gazebo

1 <xacro : macro name="transmiss ion_block " params="joint_name">
2 <transmi s s i on name="${ joint_name}_tran1">
3 <type>t ran sm i s s i on_ in t e r f a c e /SimpleTransmission</type>
4 <j o i n t name="${ joint_name}">
5 <hardwareInter face>hardware_inter face /
6 Po s i t i o nJo i n t I n t e r f a c e </hardwareInter face>
7 </jo in t >
8 <actuator name="${ joint_name}_motor">
9 <hardwareInter face>hardware_inter face /

10 Po s i t i o nJo i n t I n t e r f a c e </hardwareInter face>
11 <mechanicalReduction>1</mechanicalReduction>
12 </actuator>
13 </transmis s ion>
14 </xacro : macro>

Where:

• <joint name = ""> is the joint in which we link the actuators.

• <type> element is the type of transmission. Currently, transmission_interface
/SimpleTransmission is only supported.

• <hardwareInterface> element is the type of hardware interface to
load (position, velocity, or effort interfaces).

This macro should be placed in the kuka_iiwa_macro.xacro file, before the
block in which the robot is defined.

Of course, we have only defined the macro block. To instantiate it modify
the robot model with the following lines:

111

1 <xacro : t ransmiss ion_block joint_name="${robot_name}_joint_1"/>
2 <xacro : t ransmiss ion_block joint_name="${robot_name}_joint_2"/>
3 <xacro : t ransmiss ion_block joint_name="${robot_name}_joint_3"/>
4 <xacro : t ransmiss ion_block joint_name="${robot_name}_joint_4"/>
5 <xacro : t ransmiss ion_block joint_name="${robot_name}_joint_5"/>
6 <xacro : t ransmiss ion_block joint_name="${robot_name}_joint_6"/>
7 <xacro : t ransmiss ion_block joint_name="${robot_name}_joint_7"/>

Sadly, just adding the transmission tags is not enough for our goal. In fact,
we need to enable the gazebo_ros_control plugin to load the hardware
interface and allow us to control robot joints. The question is... what is a
plugin?

8.0.2 Gazebo plugins

Plugins are a commonly used term in the computer world. They are mod-
ular pieces of software that can add a new feature to the existing software
application. The advantage of plugins is that we don’t need to write all the
features in the main software; instead, we can make an infrastructure on
the main software to accept new plugins to it. Using this method, we can
extend the capabilities of the software to any level. Plugin files are runtime
libraries, such as shared objects (.so) which are built without linking to the
main application code. Plugins are separate entities that do not have any
dependencies with the main software. The main advantage of plugins is that
we can expand the application capabilities without making many changes
in the main application code.

In our context, Gazebo plugins help us to control the robot models,
sensors, world properties, and even the way Gazebo runs. Gazebo plugins
are a set of C++ code, which can be dynamically loaded/unloaded from
the Gazebo simulator. Using plugins, we can access all the components of
Gazebo, and also it is independent of ROS.

We will discuss on how to implement a Gazebo plugin in future lessons.
For now, just consider the possibility to add plugins to our robot simulated
in Gazebo. In our case, we want to include the gazebo_ros_control plugin
to our kuka iiwa.

8.0.3 Use the gazebo_ros_control plugin

After adding the transmission tags, we should add the gazebo_ros_control
plugin in the simulation model to parse the transmission tags and assign ap-
propriate hardware interfaces and the control manager. The following code
adds the gazebo_ros_control plugin to the kuka_iiwa_macro_ctrl.xacro
file:

1 <gazebo>

112 8. GAZEBO ROS

2 <plug in name="gazebo_ros_control " f i l ename=" l ibgazebo_ros_contro l . so">
3 <robotNamespace>kuka_iiwa</robotNamespace>
4 <robotSimType>gazebo_ros_control /DefaultRobotHWSim</robotSimType>
5 <legacyModeNS>true</legacyModeNS>
6 </plugin>
7 </gazebo>

This is the common way in which Gazebo plugins can be enabled into robot
models spawned in Gazebo scene. Here, the <plugin> element specifies
the plugin name to be loaded, which is libgazebo_ros_control.so. The
<robotNamespace> element can be given as the name of the robot; if we
are not specifying the name, it will automatically load the name of the robot
from the URDF. We can also specify the controller update rate (<controlPe-
riod>) and the type of robot hardware interface (<robotSimType>). The
default hardware interfaces are JointStateInterface, PositionJointInterface,
EffortJointInterface and VelocityJointInterface.

So, <gazebo> element is an extension to the URDF used for specifying
additional properties needed for simulation purposes in Gazebo. There are
three different types of <gazebo> elements: one for the <robot> tag, one
for <link> tags, and one for <joint> tags.

For example, if we want to add colors to the shape of our robot we can
include a <gazebo> element referring to a given link:

1 <gazebo r e f e r e n c e="${robot_name}_link_0">
2 <mater ia l>Gazebo/Black</mater ia l>
3 </gazebo>

At this point, the robot is able to react to the world gravity, so it will remain
stable on the initial position (the candle position). However, we have not
the possibility to control it. Let’s see how to enable the possibility to control
the joints of the robot using the ros_control package.

8.0.4 Control a simulated robot using ros_control

To move each joint of the kuka iiwa, we need to assign a ROS controller. In
particular, for each joint we need to attach a controller that is compatible
with the hardware interface mentioned inside the transmission tags of the
xacro file. A ROS controller mainly consists of a feedback mechanism that
can receive a set point and control the output using the feedback from the
actuators.

Consider that a ROS controller interacts with the hardware using the
hardware interface. The aim of the hardware interface is to act as a me-
diator between ROS controller output and the real or simulated hardware,
allocating the resources to control it considering the data generated by the
ROS controller. So, when we are ready to move our application on a real

113

robot, we can maintain the same software structure without carrying out any
modification to our source code previously tested in the simulation scene.

The ros_control framework is composed by multiple packages:

• control_toolbox: This package contains common modules (PID and
Sine) that can be used by all controllers.

• controller_interface: This package contains the interface base class
for controllers-

• controller_manager: This package provides the infrastructure to
load, unload, start, and stop controllers.

• controller_manager_msgs: This package provides the message and
service definition for the controller manager.

• hardware_interface: This contains the base class for the hardware
interfaces.

• transmission_interface: This package contains the interface classes
for the transmission interface (differential, joint state, position, and
velocity).

We also can used different type of ROS controllers:

• joint_position_controller: This is a simple implementation of the
joint position controller.

• joint_state_controller: This is a controller to publish joint states.

• joint_effort_controller: This is an implementation of the joint
effort (force) controller.

Fig. 8.2 shows how ros_control interacts with ROS controller, robot
hardware interface, and simulator/real hardware. We can see the third-
party tools, such as the navigation and MoveIt packages. These packages
can give the goal (set point) to the mobile robot controllers and robotic arm
controllers. These controllers can send the position, velocity, or effort to the
robot hardware interface. The hardware interface allocates each resource to
the controllers and sends values to each resource

The hardware interface is decoupled from actual hardware and simu-
lation. The values from the hardware interface can be fed to Gazebo for
simulation or to the actual hardware itself. The hardware interface is a soft-
ware representation of the robot and its abstract hardware. The resource of
the hardware interfaces are actuators, joints, and sensors. Some resources
are read-only, such as joint states, IMU, force-torque sensors, and so on, and
some are read and write compatible, such as position, velocity, and effort
joints.

Try now to interface the kuka iiwa arm with the ros controllers.

114 8. GAZEBO ROS

Figure 8.2: Interaction of ROS controllers with Gazebo and real robots

8.0.5 Interfacing joint state controllers and joint position
controllers to the arm

Interfacing robot controllers to each joint is a simple task, only two steps
are needed:

• Configure the ros controllers using a proper configuration file (yaml
format)

• Load the configuration file and launch the ros controller node using a
launch file.

The first task is to write a configuration file for desired controllers. We
want to start two controllers: the joint_state_controller/JointStateController
controller that provides the information about the joint state and a set of
position_controllers/JointPositionController to control the position of each
robot joint. Let’s create the yaml configuration file. We can store it into a
conf directory of our model package:

$ roscd kuka_iiwa_support
$ mkdir conf
$ cd conf && touch kuka_iiwa_controller.yaml

Here is reported the content of the configuration file:

kuka_iiwa:

The first line represents the namespace of the ros controllers.

Publish all joint states -----------------------------------
joint_state_controller:
type: joint_state_controller/JointStateController
publish_rate: 50

115

Then, we are ready to configure the first controller: the joint_state_controller.
The configuration requires the name of the controller (in this case joint_state_controller)
that is chosen by you and the type of the controller, that can be selected
between the available controller type. In this case we chose a JointState-
Controller

Position Controllers ---------------------------------------
joint1_position_controller:
type: position_controllers/JointPositionController
joint: iiwa_joint_1
pid: {p: 100.0, i: 0.01, d: 10.0}
joint2_position_controller:
type: position_controllers/JointPositionController
joint: iiwa_joint_2
pid: {p: 100.0, i: 0.01, d: 10.0}
joint3_position_controller:
type: position_controllers/JointPositionController
joint: iiwa_joint_3
pid: {p: 100.0, i: 0.01, d: 10.0}
joint4_position_controller:
type: position_controllers/JointPositionController
joint: iiwa_joint_4
pid: {p: 100.0, i: 0.01, d: 10.0}
joint5_position_controller:
type: position_controllers/JointPositionController
joint: iiwa_joint_5
pid: {p: 100.0, i: 0.01, d: 10.0}
joint6_position_controller:
type: position_controllers/JointPositionController
joint: iiwa_joint_6
pid: {p: 100.0, i: 0.01, d: 10.0}
joint7_position_controller:
type: position_controllers/JointPositionController
joint: iiwa_joint_7
pid: {p: 100.0, i: 0.01, d: 10.0}

Finally we can declare a position controller for each joint of the robot.
Let’s now fill the launch file to start the controllers. The only thing to

add to our launch file is the reported code:

1 <rosparam f i l e ="$ (f i nd kuka_iiwa_support)/ conf / kuka_i iwa_contro l l er . yaml " command=" load "/>

We firstly load the configuration file of our controller. Then we can run the
node controller_spawner of the package controller_manager:

1 <node name="contro l l e r_spawner " pkg="contro l ler_manager " type="spawner " respawn=" f a l s e " output=" sc r e en " ns="/kuka_iiwa " args="

116 8. GAZEBO ROS

2 j o i n t_ s t a t e_con t r o l l e r
3 j o i n t 1_po s i t i o n_con t r o l l e r
4 j o i n t 2_po s i t i o n_con t r o l l e r
5 j o i n t 3_po s i t i o n_con t r o l l e r
6 j o i n t 4_po s i t i o n_con t r o l l e r
7 j o i n t 5_po s i t i o n_con t r o l l e r
8 j o i n t 6_po s i t i o n_con t r o l l e r
9 "/>

The arguments of this node are the name of the controllers specified into
the yaml file. Of course, we have also change the xacro file to save into the
proper ROS parameter.

After launched this file, you can understand what’s happening from the
unix shell. In particular, you are informed about all the controller that are
loaded:

[INFO] [1585730377.037825, 0.224000]: Loading controller:
joint_state_controller
[INFO] [1585730377.047918, 0.234000]: Loading controller:
joint1_position_controller
[INFO] [1585730377.057779, 0.244000]: Loading controller:
joint2_position_controller
[INFO] [1585730377.062676, 0.249000]: Loading controller:
joint3_position_controller
[INFO] [1585730377.068737, 0.255000]: Loading controller:
joint4_position_controller
[INFO] [1585730377.073687, 0.260000]: Loading controller:
joint5_position_controller
[INFO] [1585730377.079606, 0.266000]: Loading controller:
joint6_position_controller

... spwaned:

[INFO] [1585730377.085591, 0.272000]: Controller Spawner:
Loaded controllers: joint_state_controller,
joint1_position_controller,
joint2_position_controller,
joint3_position_controller,
joint4_position_controller,
joint5_position_controller,
joint6_position_controller

...and started:

[INFO] [1585730377.088452, 0.275000]: Started controllers:
joint_state_controller,

117

joint1_position_controller,
joint2_position_controller,
joint3_position_controller,
joint4_position_controller,
joint5_position_controller,
joint6_position_controller

Now that everything is ready, you can check the new control topic appeared
in your ROS system. In particular, the ros_control package publishes the
state of the joints:

/kuka_iiwa/joint_states

while, accepts the desired position requiring a std_msgs::Float32 data.

/kuka_iiwa/joint1_position_controller/command
/kuka_iiwa/joint2_position_controller/command
/kuka_iiwa/joint3_position_controller/command
/kuka_iiwa/joint4_position_controller/command
/kuka_iiwa/joint5_position_controller/command
/kuka_iiwa/joint6_position_controller/command

Try to move a desired joint using one of these topics.

8.0.6 CoppeliaSim vs Gazebo ROS

Before to continue studying ROS Gazebo, try to compare it with Cop-
peliaSim, in order to choose the most suitable solution tool for our aim.

• World/robot modeling: CoppeliaSim offers a lot of models that can be
easily inserted in the scene. These models range from infrastructure
objects like walls and doors, to furniture, and even terrain models. In
this point, Gazebo is far behind. It does not offer many world modeling
features out-of-the-box. It does provide a building editor which is
very practical to design mazes and basic infrastructure. However, new
models can be imported or modified in Gazebo thanks to the URDF
and xacro specification. In one sense we could say that Gazebo model
import is more complex, but at the same time it is also more powerful.

• ROS integration, CoppeliaSim and Gazebo are natively integrated in
ROS. However, in CoppeliaSim you should program Lua (a new lan-
guage program) scripts to exchange information with the ROS net-
work. In Gazebo you can program directly in C++.

• Realism: Gazebo is more ready for the deployment of your application
on real robots. You can use ROS controllers with the same hardware
interface for the simulated and real robot to directly deploy your ap-
plication. Also the sensors are simulated in a more realistic way.

118 8. GAZEBO ROS

• Simplicity: CoppeliaSim is more simple to use respect to Gazebo.
Many things can be done with its User interface. You can also disable
the dynamics of the robots, in order to avoid strange behavior if the
urdf of your robot contains errors.

9

Mobile robotics

One of the first macro classification among the different robotics field can
be made between industrial and mobile robotic. In this context, the object
of the classification is the robot itself. We can say that and industrial robot
is a autonomous system used for manufacturing and it is capable of move-
ments along and around three axes. Typically industrial robots are huge and
dangerous manipulators or flexible, human-robot interaction enabled arms
(like the Kuka IIWA seen in previous lessons). Differently, mobile robots
are autonomous machines capable of locomotion. Of course, several other
classifications can be made considering the type of locomotion and the task
that is supposed that a robot should accomplish. In particular, regarding
locomotion we can mainly considered wheeled, legged and flying robots. In
this lesson, lesson we focus on mobile wheeled robots.

Wheeled robot represent the most popular mobile robots. The most
diffuse actuation model for such robots are:

• Steering (or car like): there robots are actuated like cars. A sin-
gle motor drives two rear wheels moving them in the same direction,
while another motor (typically a servo motor) which rotates two frontal
wheels.

• Differential drive: two side mounted independently driven wheels which
are used for both propulsion and steering.

• Omni-directional: they can move towards all the directions without
any constraint

The locomotion of a robot is strictly related to its scope. However, differ-
ential drive robots represent a good trade-off between motion capabilities
and control complexity. Let’s start to see how to build a model for mobile
differential driven robot.

119

120 9. MOBILE ROBOTICS

9.1 Creating a robot model for the differential drive
mobile robot

A differential wheeled robot will have two wheels connected on opposite sides
of the robot chassis, which is supported by one or two caster wheels. The
wheels will control the speed of the robot by adjusting individual velocity. If
the two motors are running at the same speed, the wheels will move forward
or backward. If one wheel is running slower than the other, the robot will
turn to the side of the lower speed. If we want to turn the robot to the left
side, we reduce the velocity of the left wheel, and vice versa.

There are two supporting wheels, called caster wheels, that will support
the robot and rotate freely based on the movement of the main wheels.

The URDF model of this robot is present in the cloned ROS package.
The final robot model is reported in Fig. 9.1.

Figure 9.1: Wheeled differential mobile robot

This robot robot has five joints and links. The two main joints con-
nect the wheels to the robot, while the others are fixed joints connecting
the caster wheels and the base footprint to the body of the robot. We
can create the xacro file to design this robot into the urdf folder of the
rl_robot_description_pkg ROS package.

As already made for the pan_tilt robot, create two xacro files.

$ roscd rl_robot_description_pkg/urdf/
$ touch touch diff_robot_macro.xacro
$ touch touch diff_robot.xacro

Our goal is to define the following elements:

• base_link: the base frame of the mobile robot

• caster_link: two links representing the passive wheels of the robot

9.1. CREATING A ROBOT MODEL FOR THE DIFFERENTIAL DRIVE MOBILE ROBOT121

• caster joint: two fixed jonins connecting the base_link with the
casters

• wheels: two actuated wheel with continuous joints allowing the mo-
tion of the robot

Start analyzing the macro file.
Before starting to include the macros, we define some properties. In

particular, we define also the color of the material of the robotic links. This
is useful only to display the robot in RViz. As already seen the same will
be made to import the robot in Gazebo.

1 <robot name="wheel " xmlns : xacro="http ://www. ros . org /wik i / xacro">
2 <xacro : property name="M_PI" va lue ="3.1415926535897931" />
3 <xacro : property name="M_PI_2" value ="1.570796327" />
4 <xacro : property name="DEG_TO_RAD" value ="0.017453293" />
5

6 <!−−Mater ia l De f i n i t i on−−>
7 <mate r i a l name="Black">
8 <co l o r rgba="0.0 0 .0 0 .0 1.0"/>
9 </mater ia l>

10

11 <mate r i a l name="Red">
12 <co l o r rgba="0.8 0 .0 0 .0 1.0"/>
13 </mater ia l>
14

15 <mate r i a l name="White">
16 <co l o r rgba="1.0 1 .0 1 .0 1.0"/>
17 </mater ia l>
18

19 <mate r i a l name="Blue">
20 <co l o r rgba="0.0 0 .0 0 .8 1.0"/>
21 </mater ia l>

Then, we define some properties to characterize the structure of the robot.
In particular, the dimension and the messes of the wheels and casters.

1 <!−− Base p r op e r t i e s −−>
2 <xacro : property name="base_height " va lue ="0.02" />
3 <xacro : property name="base_radius " va lue ="0.15" />
4 <xacro : property name="base_mass " va lue ="5" />
5

6 <!−− c a s t e r wheel p r o p r i e t i e s −−>
7 <xacro : property name="cas te r_he ight " va lue ="0.04" />
8 <xacro : property name=" cas te r_rad ius " va lue ="0.025" />
9 <xacro : property name="caster_mass " va lue ="0.5" />

122 9. MOBILE ROBOTICS

10

11 <!−− Wheels −−>
12 <xacro : property name="wheel_radius " va lue ="0.04" />
13 <xacro : property name="wheel_height " va lue ="0.02" />
14 <xacro : property name="wheel_mass " va lue ="2.5" />
15

16 <xacro : property name="base_x_origin_to_wheel_origin " va lue ="0.25" />
17 <xacro : property name="base_y_origin_to_wheel_origin " va lue ="0.3" />
18 <xacro : property name="base_z_origin_to_wheel_origin " va lue ="0.0" />

We are now ready to include the caster joint macro. We define this joint as
a fixed joint.

1 <xacro : macro name=" ca s t e r_ j o i n t " params="name parent ch i l d ∗ o r i g i n ">
2 <j o i n t name="${name}" type=" f i x ed " >
3 <parent l i n k="${ parent }" />
4 <ch i l d l i n k="${ ch i l d }" />
5 <xacro : in s e r t_b lock name=" o r i g i n " />
6 </jo in t >
7 </xacro : macro>

Then, we can define the link representing the caster:

1 <xacro : macro name=" ca s t e r_ l i nk " params="name ∗ o r i g i n ">
2 <l i n k name="${name}">
3 <vi sua l >
4 <xacro : in s e r t_b lock name=" o r i g i n " />
5 <geometry>
6 <sphere rad iu s="${ cas t e r_rad ius }" />
7 </geometry>
8 <mate r i a l name="Black " />
9 </v i sua l >

10 <c o l l i s i o n >
11 <geometry>
12 <sphere rad iu s="${ cas t e r_rad ius }" />
13 </geometry>
14 <o r i g i n xyz="0 0 .02 0" rpy="${M_PI/2} 0 0" />
15 </c o l l i s i o n >
16 <i n e r t i a l >
17 <mass value="${ caster_mass }" />
18 <o r i g i n xyz="0 0 0" />
19 <i n e r t i a ixx ="0.001" ixy ="0.0" i x z ="0.0"
20 iyy ="0.001" i y z ="0.0"
21 i z z ="0.001" />
22 </ i n e r t i a l >
23 </l ink>

9.1. CREATING A ROBOT MODEL FOR THE DIFFERENTIAL DRIVE MOBILE ROBOT123

24 </xacro : macro>

Now, we define the wheels of the robot. In this case, wa define a cylindrical
link (the wheel) and a continuous joint allowing the infinite rotation of the
link. Notice how we considered one macro for both wheels using mathemat-
ical expressions.

1 <xacro : macro name="wheel " params=" fb l r parent t rans la teX trans la teY f l i pY ">
2 <l i n k name="${ fb }_${ l r }_wheel">
3 <vi sua l >
4 <o r i g i n xyz="0 0 0" rpy="${ f l i pY ∗M_PI/2} 0 0 " />
5 <geometry>
6 <cy l i nd e r l ength="${wheel_height }" rad iu s="${wheel_radius }" />
7 </geometry>
8 <mate r i a l name="DarkGray " />
9 </v i sua l >

10 <c o l l i s i o n >
11 <o r i g i n xyz="0 0 0" rpy="${ f l i pY ∗M_PI/2} 0 0 " />
12 <geometry>
13 <cy l i nd e r l ength="${wheel_height }" rad iu s="${wheel_radius }" />
14 </geometry>
15 </c o l l i s i o n >
16 <i n e r t i a l >
17 <mass value="${wheel_mass }" />
18 <o r i g i n xyz="0 0 0" />
19 <cy l i nd e r_ i n e r t i a m="${wheel_mass }" r="${wheel_radius }" h="${wheel_height }" />
20 </ i n e r t i a l >
21 </l ink>
22

23 <j o i n t name="${ fb }_${ l r }_wheel_joint " type="cont inuous ">
24 <parent l i n k="${ parent }"/>
25 <ch i l d l i n k="${ fb }_${ l r }_wheel"/>
26 <o r i g i n xyz="${ t rans la teX ∗ base_x_origin_to_wheel_origin } ${ t rans la teY ∗ base_y_origin_to_wheel_origin } ${base_z_origin_to_wheel_origin }" rpy="0 0 0" />
27 <ax i s xyz="0 1 0" rpy="0 0" />
28 <l im i t e f f o r t ="100" v e l o c i t y ="100"/>
29 <jo i n t_p rop e r t i e s damping="0.0" f r i c t i o n ="0.0"/>
30 </jo in t >
31

32 </xacro : macro>

As for the contents of the diff_robot.xacro file, we firstly define the
base_link of the robot, then include the element implemented as macro
in the macro file:

1 <!−−Actual body/ ch a s s i s o f the robot−−>
2 <l i n k name="base_l ink">

124 9. MOBILE ROBOTICS

Figure 9.2: Display differential mobile robot using RViz.

3 <i n e r t i a l >
4 <mass value="${base_mass }" />
5 <o r i g i n xyz="0 0 0" />
6 <cy l i nd e r_ i n e r t i a m="${base_mass }" r="${base_radius }" h="${base_height }" />
7 </ i n e r t i a l >
8 <vi sua l >
9 <o r i g i n xyz="0 0 0" rpy="0 0 0" />

10 <geometry>
11 <cy l i nd e r l ength="${base_height }" rad iu s="${base_radius }" />
12 </geometry>
13 <mate r i a l name="White " />
14 </v i sua l >
15 <c o l l i s i o n >
16 <o r i g i n xyz="0 0 0" rpy="0 0 0 " />
17 <geometry>
18 <cy l i nd e r l ength="${base_height }" rad iu s="${base_radius }" />
19 </geometry>
20 </c o l l i s i o n >
21 </l ink>
22

23 <xacro : c a s t e r_ j o i n t
24 name=" cas t e r_f ront_l ink "
25 parent="base_l ink "
26 ch i l d=" cas t e r_f ront_l ink ">
27 <o r i g i n xyz="0.115 0 .0 0 . 007 " rpy="${−M_PI/2} 0 0"/>
28 </xacro : ca s t e r_ jo in t>
29

9.1. CREATING A ROBOT MODEL FOR THE DIFFERENTIAL DRIVE MOBILE ROBOT125

30 <xacro : c a s t e r_ l i nk
31 name=" cas t e r_f ront_l ink ">
32 <o r i g i n xyz="0 0 .02 0" rpy="${M_PI/2} 0 0" />
33 </xacro : cas te r_l ink>
34

35 <xacro : c a s t e r_ j o i n t
36 name="caster_back_jo int "
37 parent="base_l ink "
38 ch i l d="caster_back_l ink">
39 <o r i g i n xyz="−0.135 0 .0 0 . 009 " rpy="${−M_PI/2} 0 0"/>
40 </xacro : ca s t e r_ jo in t>
41

42 <xacro : c a s t e r_ l i nk
43 name="caster_back_l ink">
44 <o r i g i n xyz="0.02 0 .02 0 " rpy="${M_PI/2} 0 0" />
45 </xacro : cas te r_l ink>
46

47

48 <wheel fb=" f r on t " l r =" r i g h t " parent="base_l ink " t rans la teX="0" t rans la teY ="0.5" f l i pY="1"/>
49 <wheel fb=" f r on t " l r =" l e f t " parent="base_l ink " t rans la teX="0" t rans la teY="−0.5" f l i pY="1"/>

In order to check that the robot has been designed correctly, create a proper
launch file named display_mobile_robot.launch configuring the Robot-
Model plugin to display the xacro model using RViz. The result should be
similar to the one shown in Fig. 9.2.

9.1.1 Simulate differential mobile robot in Gazebo

The next step to simulate the mobile robot in Gazebo is to add the trans-
mission and the ros_control plugin to properly actuate the wheels of the
robot, like we made for the iiwa arm. We need to add two different trans-
mission, one for each joint controlling the wheels. Let’s to edit he macro
file: diff_robot_macro.xacro file. You can add the transmission element
into the wheel macro block:

1 <transmi s s i on name="${ fb }_${ l r }_wheel_joint_trans">
2 <type>t ran sm i s s i on_ in t e r f a c e /SimpleTransmission</type>
3 <j o i n t name="${ fb }_${ l r }_wheel_joint " />
4 <actuator name="${ fb }_${ l r }_wheel_joint_motor">
5 <hardwareInter face>E f f o r t J o i n t I n t e r f a c e </hardwareInter face>
6 <mechanicalReduction>1</mechanicalReduction>
7 </actuator>
8 </transmis s ion>

We need to add the ros_control plugin. In the iiwa arm case, we just want
to control each joint of the robot specifying the desired position. When

126 9. MOBILE ROBOTICS

we control a mobile robot, typically we want to specify a desired velocity
for its base. In particular, the linear and rotational velocity are reason-
able input for a mobile base. In ROS this control input travels using a
geometry_msgs::Twist:

geometry_msgs/Vector3 linear
float64 x
float64 y
float64 z
geometry_msgs/Vector3 angular
float64 x
float64 y
float64 z

The published command must be translate into a desired velocity for the
two wheels of the robot. This step is typically made with a proper allocation
matrix considering the kinematic of the robotic platform. In Gazebo, this
behavior can be modeled using the libgazebo_ros_diff_drive plugin. We
can add this plugin in the diff_robot.xacro file:

1 <gazebo>
2 <plug in name=" d i f f e r e n t i a l_d r i v e_ c o n t r o l l e r " f i l ename=" l ibgazebo_ros_di f f_dr ive . so">
3 <legacyMode>true</legacyMode>
4 <rosDebugLevel>Debug</rosDebugLevel>
5 <publishWheelTF>f a l s e </publishWheelTF>
6 <robotNamespace>/</robotNamespace>
7 <publ ishTf >1</publ ishTf>
8 <publ i shWheelJo intState>f a l s e </publ i shWheelJo intState>
9 <alwaysOn>true</alwaysOn>

10 <updateRate >100.0</updateRate>
11 <l e f t J o i n t >front_le f t_whee l_jo int </ l e f t J o i n t >
12 <r igh tJo in t >front_right_wheel_jo int </r i gh tJo in t >
13 <wheelSeparat ion>${2∗ base_radius}</wheelSeparat ion>
14 <wheelDiameter>${2∗wheel_radius}</wheelDiameter>
15 <broadcastTF>1</broadcastTF>
16 <wheelTorque>30</wheelTorque>
17 <whee lAcce l e rat ion >1.8</whee lAcce l e rat ion>
18 <commandTopic>cmd_vel</commandTopic>
19 <odometryFrame>odom</odometryFrame>
20 <odometryTopic>odom</odometryTopic>
21 <robotBaseFrame>base_link</robotBaseFrame>
22 </plugin>
23 </gazebo>

We can provide the parameters such as the wheel joints of the robot (joints
should be of a continuous type), wheel separation, wheel diameters, odom-

9.1. CREATING A ROBOT MODEL FOR THE DIFFERENTIAL DRIVE MOBILE ROBOT127

etry topic, and so on, in this plugin. Among the different parameters an
the <commandTopic>cmd_vel</commandTopic> one specifies the command
velocity topic to the plugin, which is basically a Twist message in ROS
(sensor_msgs/Twist). We can publish the Twist message into the /cmd_vel
topic, and we can see the robot start to move from its position.

As usual, the last step to start our simulation is to write a convenient
launch file to start the simulation spawning the mobile robot. Create a
launch file into our package:

$ roscd rl_robot_description_pkg
$ mkdir launch && cd launch
$ touch spawn_diff_robot.launch

Here is the content of the launch file:

1 <?xml ve r s i on ="1.0" ?>
2 <launch>
3 <arg name="paused " d e f au l t=" f a l s e "/>
4 <arg name="use_sim_time " d e f au l t=" t rue "/>
5 <arg name="gui " d e f au l t=" t rue "/>
6 <arg name="head l e s s " d e f au l t=" f a l s e "/>
7 <arg name="debug " d e f au l t=" f a l s e "/>
8

9 <inc lude f i l e ="$ (f i nd gazebo_ros)/ launch/empty_world . launch">
10 <arg name="debug " va lue="$ (arg debug) " />
11 <arg name="gui " va lue="$ (arg gui) " />
12 <arg name="paused " value="$ (arg paused)"/>
13 <arg name="use_sim_time " value="$ (arg use_sim_time)"/>
14 <arg name="head l e s s " va lue="$ (arg head l e s s)"/>
15 </inc lude>
16

17 <param name=" robot_desc r ip t i on " command="$ (f i nd xacro)/ xacro ’ $ (f i nd r l_robot_descr ipt ion_pkg)/ urdf / d i f f_robot . xacro ’ " />
18

19 <node name="urdf_spawner " pkg="gazebo_ros " type="spawn_model " respawn=" f a l s e " output=" sc r e en "
20 args="−urdf −model di f f_wheeled_robot −param robot_desc r ip t i on "/>
21 </launch>

You can launch this file and discover a list of new topic helping us to interact
with the mobile robot.

• cmd_vel: the geometry_msgs::Twist message used to control the
robot. This is the input of the differential drive controller plugin. In
particular, the x element of the linear part of the message controls the
forward velocity of the robot, while the z element of the angular part
of the message structure controls the angular motion.

128 9. MOBILE ROBOTICS

• odom: This topic publishes the odometry data calculated by the gazebo
differential drive plugin. Odometry is the use of data from motion
sensors to estimate change in position over time. In wheeled robot the
measures get by encoders. We will return on this point, but consider
that odometry is not used as is for smart navigation.

What is the difference between the configuration of this robot and the
kuka iiwa? In the kuka iiwa case, we use a plugin in gazebo who simu-
lates an hardware interface for ros_control package. In this way, if you
implement a proper hardware interface for your real robot, the software
structure will be exactly the same. In this case, we are just using a plugin
implemented in gazebo, who accepts the desired body velocity and convert
these into the wheels velocity. This means that when you want to move
your software on a real robot, you must do additional work. Of course,
ros_control also include a library to implement a differential drive con-
troller: the diff_drive_contoller (http://wiki.ros.org/diff_drive_
controller?distro=melodic.

9.1.2 Control the differential drive robot

The overall goal of robotics application is to allow robot to perform actions in
a complete autonomy or, at least with a minimal cooperation with a human
operator. However, directly control your robot could help developers to
test the capabilities of the robot and the developed algorithm as well. One
of the most simple way to interact with robots is using standard joypad.
This is particularly evident in case of mobile robots, since you can use the
joypad to move it into the scene. We will see how sometimes is important to
explore manually the environment before to run the autonomous application.
However, joypad can be useful also in case of robot manipulators. Consider
that you want to test a control algorithm for the pose of the end effector, or
just test the motion along one joint.

ROS supports several joypad devices. In particular, if you have a blue-
tooth or USB joypad you could test the joy node (http://wiki.ros.org/
joy). This node can be installed with the following command:

$ sudo apt-get install ros-melodic-joy

This package reads the hardware connected to your robot/computer pub-
lishing a sensor_msgs/Joy data, containing the value of the joypad axes
and buttons.

Let’s try to simulate the behavior of a joypad using our keyboard, in
order to control the differential drive robot modeled in this section. The
goal here is to read data from the keyboard and then publish a geome-
try_msgs/Twist message on the cmd_vel topic. Of course, here we have not
axes so we must use the keyboard to generate the velocity message. Create
a key_teleop package:

http://wiki.ros.org/diff_drive_controller?distro=melodic
http://wiki.ros.org/diff_drive_controller?distro=melodic
http://wiki.ros.org/joy
http://wiki.ros.org/joy

9.1. CREATING A ROBOT MODEL FOR THE DIFFERENTIAL DRIVE MOBILE ROBOT129

$ roscd && cd .. && cd src
$ catkin_create_pkg key_teleop roscpp geometry_msgs

Create a new source file called key_teleop.cpp. One way to specify the
desired velocity is to use the following keys. We can use the w and x keys to
specify a linear velocity in the forward and backward direction respectively.
An additional idea could be that, if the robot is moving along a positive
direction and the user requires for a negative direction, the robot stops its
linear motion. The same thing happen for the angular rotation motion
invoked with the a and d keys.

As usual, we include the desired header file. We also define two static
variable for specifying the linear and angular velocity.

1 #inc lude " ro s / ro s . h "
2 #inc lude " geometry_msgs/Twist . h "
3 #inc lude " boost / thread . hpp "
4 #inc lude <iostream>
5 us ing namespace std ;
6

7 #de f i n e LIN_VEL 0 .2
8 #de f i n e ANG_VEL 0 .8

Then we can define the KEY_CTRL class. Among its member the _fv and
_rv store the desired forward and rotation velocities. In its constructor, we
instantiate the publisher of the velocity command.

1 c l a s s KEY_CTRL {
2 pub l i c :
3 KEY_CTRL() ;
4 void key_input () ;
5 void run () ;
6 void v e l_c t r l () ;
7 pr i va t e :
8 ro s : : NodeHandle _nh ;
9 ro s : : Pub l i she r _vel_pub ;

10 f l o a t _fv ; //Forward v e l o c i t y
11 f l o a t _rv ; // Rotat iona l v e l o c i t y
12 } ;
13 KEY_CTRL: :KEY_CTRL() {
14 _vel_pub = _nh . adve r t i s e < geometry_msgs : : Twist >("/cmd_vel " , 0) ;
15 }

One of the thread of our node is in charge of get keyboard input. As dis-
cussed, we use the w, x, a, d buttons to generate the velocity and the s
button to stop the robot.

1 void KEY_CTRL: : key_input () {

130 9. MOBILE ROBOTICS

2 s t r i n g input ;
3 cout << "Keyboard Input : " << endl ;
4 cout << " [w] : Forward d i r e c t i o n v e l o c i t y " << endl ;
5 cout << " [x] : Backward d i r e c t i o n v e l o c i t y " << endl ;
6 cout << " [a] : Le f t angular v e l o c i t y " << endl ;
7 cout << " [d] : Right angular v e l o c i t y " << endl ;
8 cout << " [s] : s top the robot ! " << endl ;
9 whi le (ro s : : ok ()) {

10 g e t l i n e (cin , input) ;
11 i f (input == "w")
12 _fv = (_fv < 0 .0) ? 0 .0 : LIN_VEL;
13 e l s e i f (input == "x ")
14 _fv = (_fv > 0 .0) ? 0 .0 : −LIN_VEL;
15 e l s e i f (input == " a ")
16 _rv = (_rv > 0 .0) ? 0 .0 : −ANG_VEL;
17 e l s e i f (input == "d")
18 _rv = (_rv < 0 .0) ? 0 .0 : ANG_VEL;
19 e l s e i f (input == " s ")
20 _fv = _rv = 0 . 0 ;
21 }
22 }

In the control function, we just set the output of the node (the cmd_vel
topic).

1 void KEY_CTRL: : v e l_c t r l () {
2 ro s : : Rate r (1 0) ;
3 geometry_msgs : : Twist cmd_vel ;
4 whi le (ro s : : ok ()) {
5 cmd_vel . l i n e a r . x = _fv ;
6 cmd_vel . angular . z = _rv ;
7 _vel_pub . pub l i sh (cmd_vel) ;
8 r . s l e e p () ;
9 }

10 }

Finally, as already seen in previous examples, in he run function we start
the desired threads: the one to get the input and the one to publish the
velocities.

1 void KEY_CTRL: : run () {
2 boost : : thread key_input_t (&KEY_CTRL: : key_input , t h i s) ;
3 boost : : thread ve l_ctr l_t (&KEY_CTRL: : ve l_ct r l , t h i s) ;
4 ro s : : sp in () ;
5 }

9.2. GAZEBO SENSOR SIMULATION 131

1 i n t main (i n t argc , char ∗∗ argv) {
2 ro s : : i n i t (argc , argv , " key_ctr l ") ;
3 KEY_CTRL kc ;
4 kc . run () ;
5 re turn 0 ;
6 }

Compile this package and test the node after launched the simulation scene:

$ roslaunch rl_robot_description_pkg spawn_diff_robot.launch
$ rosrun key_teleop key_teleop

9.2 Gazebo sensor simulation
An important feature of Gazebo is the possibility to simulate a variety of
sensors other than robots. The interface between a real and a simulated
sensor is exactly the same. Some of these sensors are already implemented
and available in the Gazebo installation, however, a variety of sensors have
been released by other developer and can be imported in your simulation
scene. Just sensors most commonly used in the development of a robotic
application and already included in the default installation of Gazebo. As
you can imagine, in Gazebo a sensor is simulated by means of a dedicated
plugin.

To test such sensors we could create a proper package to store all the
configuration file needed to start them. Create the gazebo_sensors pack-
age:

$ catkin_create_pkg gazebo_sensors roscpp
gazebo_plugins gazebo_ros sensor_msgs tf

The idea is to define a base object and attach to it different sensors to test.
Create an urdf directory and fill the base.xacro file with the following
content:

1 <?xml ve r s i on ="1.0"?>
2

3 <robot name=" senso r " xmlns : xacro="http ://www. ros . org /wik i / xacro">
4

5 <xacro : property name="box_height " va lue ="0.2" />
6 <xacro : property name="box_width " va lue ="0.2" />
7

8 <l i n k name="world"/>
9 <j o i n t name=" f i x ed " type=" f i x ed ">

10 <parent l i n k="world"/>
11 <ch i l d l i n k=" senso r "/>
12 </jo in t >

132 9. MOBILE ROBOTICS

13 <l i n k name=" senso r ">
14 <c o l l i s i o n >
15 <o r i g i n xyz="0 0 ${box_height /2}" rpy="0 0 0"/>
16 <geometry>
17 <box s i z e ="${box_width} ${box_width} ${box_height}"/>
18 </geometry>
19 </c o l l i s i o n >
20 <vi sua l >
21 <o r i g i n xyz="0 0 ${box_height /2}" rpy="0 0 0"/>
22 <geometry>
23 <box s i z e ="${box_width} ${box_width} ${box_height}"/>
24 </geometry>
25 <mate r i a l name="orange "/>
26 </v i sua l >
27 <i n e r t i a l >
28 <o r i g i n xyz="0 0 1" rpy="0 0 0"/>
29 <mass value="1"/>
30 <i n e r t i a
31 ixx ="1.0" ixy ="0.0" i x z ="0.0"
32 iyy ="1.0" i y z ="0.0"
33 i z z ="1.0"/>
34 </ i n e r t i a l >
35 </l ink>
36 <mate r i a l name="orange">
37 <co l o r rgba="${255/255} ${108/255} ${10/255} 1.0"/>
38 </mater ia l>
39 <gazebo r e f e r e n c e=" senso r ">
40 <mater ia l>Gazebo/Blue</mater ia l>
41 </gazebo>
42 </robot>

This model just represents a box of 20 centimeters called sensor. We can
include this from the model file of the sensors.

Camera sensor

Camera sensors are one of the most common sensors used in robotics. Cam-
era are cheap and reliable sensors that can be used in different contexts.
Typically, cameras are used to implement image elaboration algorithms able
to detect and recognize shapes or known objects. Also color based approach
can be used with camera. One of the biggest problems with such sensors
arise behind the fact that it’s hard to retrieve depth information by a gath-
ered image. In fact, with 2D images you can only estimate the distance
between a target and an image using triangulation techniques.

9.2. GAZEBO SENSOR SIMULATION 133

The simulated camera is implemented by the libgazebo_ros_camera.so
plugin. The parameters to configure this plugin are:

• update_rate: the frequency of the updated of the camera sensor.
Commercial devices usually run at 30 or 60 Hz.

• horizontal_fov: the field of view. It represents the part of the world
that is visible through the camera, expressed in radians.

• width: the width of the image

• height: the height of the image

• format: the format of the image. A colored image format is: R8G8B8

• near: how close the images are visible by the camera

• far: how far the image are visible by the camera

You can set these parameters in the xacro file instantiating the camera.
Create the camer.xacro file and fill it with the following content:

1 <?xml ve r s i on ="1.0"?>
2

3 <robot name=" senso r " xmlns : xacro="http ://www. ros . org /wik i / xacro">
4 <xacro : i n c lude f i l ename="$ (f i nd gazebo_sensors)/ urdf /base . xacro "/>
5 <gazebo r e f e r e n c e=" senso r ">
6 <sensor type="camera " name="camera1">
7 <update_rate >30.0</update_rate>
8 <camera name="head">
9 <hor izonta l_fov >1.3962634</ hor izonta l_fov>

10 
15 <c l i p >
16 <near >0.02</near>
17 <far >300</far>
18 </c l i p >
19 <noise>
20 <type>gauss ian </type>
21 <mean>0.0</mean>
22 <stddev >0.007</stddev>
23 </noise>
24 </camera>
25 <plug in name="camera_contro l l e r " f i l ename="libgazebo_ros_camera . so">

134 9. MOBILE ROBOTICS

26 <alwaysOn>true</alwaysOn>
27 <updateRate >0.0</updateRate>
28 <cameraName>/camera</cameraName>
29 <imageTopicName>image_raw</imageTopicName>
30 <cameraInfoTopicName>camera_info</cameraInfoTopicName>
31 <frameName>camera_link</frameName>
32 <hackBase l ine >0.07</hackBase l ine>
33 <distort ionK1 >0.0</dis tort ionK1>
34 <distort ionK2 >0.0</dis tort ionK2>
35 <distort ionK3 >0.0</dis tort ionK3>
36 <dis tor t ionT1 >0.0</di s tor t ionT1>
37 <dis tor t ionT2 >0.0</di s tor t ionT2>
38 </plugin>
39 </sensor>
40 </gazebo>
41 </robot>

In this file we can also specify the name of the topic where the images and
the camera calibration are published:

• imageTopicName: this topic contains the image stream. The type of
this message is: sensor_msgs::Image.

• cameraInfoTopicName: streams information about the calibration of
the camera. Typically, image elaboration algorithms require the cali-
bration of the camera to transform pixel information into 2D Cartesian
information. Usually, before to use a camera you should calibrate it
using standard techniques, of course in the simulated world the calibra-
tion is already available using a sensor_msgs::CameraInfo message.

To start this sensor use the following camera.launch file:

1 <?xml ve r s i on ="1.0" ?>
2 <launch>
3

4 <arg name="paused " d e f au l t=" f a l s e "/>
5 <arg name="use_sim_time " d e f au l t=" t rue "/>
6 <arg name="gui " d e f au l t=" t rue "/>
7 <arg name="head l e s s " d e f au l t=" f a l s e "/>
8 <arg name="debug " d e f au l t=" f a l s e "/>
9 <arg name="verbose " d e f au l t=" f a l s e "/>

10 <arg name="world_name " d e f au l t="worlds /empty . world"/> <!−− Note : the world_name i s with r e sp e c t to GAZEBO_RESOURCE_PATH environmental v a r i a b l e −−>
11

12 <!−− Star t gazebo and load the world −−>
13 <inc lude f i l e ="$ (f i nd gazebo_ros)/ launch/empty_world . launch " >
14 <arg name="paused " value="$ (arg paused)"/>

9.2. GAZEBO SENSOR SIMULATION 135

15 <arg name="use_sim_time " value="$ (arg use_sim_time)"/>
16 <arg name="gui " va lue="$ (arg gui)"/>
17 <arg name="head l e s s " va lue="$ (arg head l e s s)"/>
18 <arg name="debug " va lue="$ (arg debug)"/>
19 <arg name="verbose " va lue="$ (arg verbose)"/>
20 <arg name="world_name " value="$ (arg world_name)"/>
21 </inc lude>
22

23 <!−− Spawn the example robot −−>
24 <param name=" robot_desc r ip t i on " command="$ (f i nd xacro)/ xacro −−i no rde r ’ $ (f i nd gazebo_sensors)/ urdf /camera . xacro ’ " />
25 <node pkg="gazebo_ros " type="spawn_model " name="spawn_model " args="−urdf −param / robot_desc r ip t i on −model example " />
26 <node pkg=" robot_state_publ i sher " type=" robot_state_publ i sher " name="robot_state_publ i sher " />
27 </launch>

RGB-D sensor

A very popular sensor used in robotics in the last decade is the RGB-D
sensor. In this context, the D stands for Depth. One of the first sensor of
this type spawned into the marker was the kinect sensor. Recently, Intel is
spending a lot of effort to produce new generation sensors for robotics (i.e.
Realsense sensors), see Fig. 9.3. The aim of these sensor is to provide both
information about the 2d image in the form of colored image (RGB) and
also the spatial information relate to each pixel of the image. In particular,
users are able to reconstruct the 3d point representing the position of each
pixel in the image plane. The format to represent such information is called
PointCloud, we will discuss about Point Cloud elaboration in next lessons,
for now just consider the possibility to spawn this sensor in gazebo and
visualize its data. The plugin implementing gazebo a RGB-D sensor is the

Figure 9.3: RGB-D sensor produced by Intel

libgazebo_ros_openni_kinect.so plugin.

136 9. MOBILE ROBOTICS

To include it we have only to create a new xacro file including the
base.xacro file and the launch file to import it into gazebo scene. Create
the rgbd.xacro file:

1 <?xml ve r s i on ="1.0"?>
2 <robot name=" senso r " xmlns : xacro="http ://www. ros . org /wik i / xacro">
3 <xacro : i n c lude f i l ename="$ (f i nd gazebo_sensors)/ urdf /base . xacro "/>
4 <gazebo r e f e r e n c e=" senso r ">
5 <sensor type="depth " name="$depth_camera">
6 <always_on>true</always_on>
7 <update_rate >30.0</update_rate>
8 <camera>
9 <hor izonta l_fov >2</hor izonta l_fov>

10 
15 <c l i p >
16 <near >0.01</near>
17 <far >100</far>
18 </c l i p >
19 </camera>
20 <plug in name="depth_camera_plugin " f i l ename=" l ibgazebo_ros_openni_kinect . so">
21 <alwaysOn>true</alwaysOn>
22 <base l i n e >0.11</ base l i n e>
23 <updateRate >30.0</updateRate>
24 <cameraName>depth_camera</cameraName>
25 <imageTopicName>depth_camera/image_raw</imageTopicName>
26 <cameraInfoTopicName>depth_camera/camera_info</cameraInfoTopicName>
27 <depthImageTopicName>depth/ d i spa r i t y </depthImageTopicName>
28 <depthImageCameraInfoTopicName>depth/camera_info</depthImageCameraInfoTopicName>
29 <pointCloudTopicName>depth/ points </pointCloudTopicName>
30 <frameName>rgbd_link</frameName>
31 <pointCloudCutof f >0.5</pointCloudCutof f>
32 <distort ionK1 >0.0</dis tort ionK1>
33 <distort ionK2 >0.0</dis tort ionK2>
34 <distort ionK3 >0.0</dis tort ionK3>
35 <dis tor t ionT1 >0.0</di s tor t ionT1>
36 <dis tor t ionT2 >0.0</di s tor t ionT2>
37 </plugin>
38 </sensor>
39 </gazebo>
40 </robot>

9.2. GAZEBO SENSOR SIMULATION 137

Here the plugin parameters are very similar to the one considered for the
camera model. Edit the camera launch file to spawn the rgbd sensor instead.
After loaded this new sensor in the simulation scene, you could get its data
using the following topic:

• /depth_camera/depth_camera/image_raw: Like a standard camera,
a RGB-D sensor publishes images on a sensor_msgs::Image.

• /depth_camera/depth_camera/camera_info: Again, like a standard
camera a RGB-D sensor publishes images on a sensor_msgs::CameraInfo
message.

• /depth_camera/depth/disparity: This is a particular type of image
that is published by all the depth sensors. This image encodes the
information about the distance of all the element grabbed by the sensor
respect the sensor itself.

• /depth_camera/depth/camera_info: A depth camera also has a sep-
arate calibration for the published disparity image.

• /depth_camera/depth/points: Combining the disparity image and
its calibration is possible to generate 3d spatial information for each
pixel of the colored image. This information is encoded into a sen-
sor_msgs/PointCloud2 data type. Fig. 9.4 shows the output of point-
cloud data generated by the depth sensor after included an ambulance
in the gazebo scene.

Figure 9.4: PCL displayed in RViz

138 9. MOBILE ROBOTICS

LIDAR sensor

A very popular sensor used mainly in robot navigation is the LIDAR sensor.
Using such sensors is possible to retrieve the distance of an object respect to
the sensor. Laser scanners are very precise with a long operative range (up
to 40 meters). In addition, they emits a circular laser beam able to detect
objects around the whole circumference of the robot. The main classification
in terms of laser scanner for robotic applications arise behind the working
space. In particular, we can distinguish between 2D and 3D laser scanners.
Their shapes is very compact and similar to the one shown in Fig. 9.5.
In recently years, 3d laser scanners became very popular for autonomous
driving applications. Let’s see how to add a 2D lidar in Gazebo. The plugin

Figure 9.5: Velodyine 3d LIDAR sensor

implementign the sensor is the libgazebo_ros_laser.so plugin. As usual,
create the laser.xacro file to enable the plugin into the scene:

1 <?xml ve r s i on ="1.0"?>
2

3 <robot name=" senso r " xmlns : xacro="http ://www. ros . org /wik i / xacro">
4 <xacro : i n c lude f i l ename="$ (f i nd sensor_sim_gazebo)/ urdf / s enso r . xacro "/>
5 <gazebo r e f e r e n c e=" senso r ">
6 <sensor type="ray " name="head_hokuyo_sensor">
7 <pose>0 0 0 0 0 0</pose>
8 <v i s u a l i z e >f a l s e </v i s u a l i z e >
9 <update_rate>40</update_rate>

10 <ray>
11 <scan>
12 <hor i zonta l >
13 <samples >720</samples>
14 <re so l u t i on >1</r e s o l u t i on >
15 <min_angle>−1.570796</min_angle>
16 <max_angle>1.570796</max_angle>
17 </hor i zonta l >
18 </scan>

9.2. GAZEBO SENSOR SIMULATION 139

19 <range>
20 <min>0.8</min>
21 <max>30.0</max>
22 <re so l u t i on >0.01</ r e s o l u t i on >
23 </range>
24 <noise>
25 <type>gauss ian </type>
26 <mean>0.0</mean>
27 <stddev >0.01</stddev>
28 </noise>
29 </ray>
30 <plug in name="gazebo_ros_head_hokuyo_controller " f i l ename=" l ibgazebo_ros_lase r . so">
31 <topicName>/ l a s e r / scan</topicName>
32 <frameName>world</frameName>
33 </plugin>
34 </sensor>
35 </gazebo>
36 </robot>

The most important parameters to configure this plugin are:

• min_angle: The minimum angle on the horizontal plane

• max_angle: The maximum angle on the horizontal plane

• min: the minimum range range to detect objects

• max: the maximum range range to detect objects

For example if you want to detect have a full beam on the horizontal plan
you should specify your maximum and minimum angles in order to have
6.28 radians of field of view. In our case, the sensor is only able to detect
objects placed ahead to it. Write a launch a proper launch file to spawn the
laser in gazebo and check the topic list.

Laser scanner publishes its output using a sensor_msgs::LaserScan
message. This type of message stores a the distance detected by the sensor
in a static huge vector (ranges), where, in each location is reported the
distance between the sensor and scene object relative to a specific angle of
the sensor.

std_msgs/Header header
uint32 seq
time stamp
string frame_id
float32 angle_min
float32 angle_max
float32 angle_increment

140 9. MOBILE ROBOTICS

float32 time_increment
float32 scan_time
float32 range_min
float32 range_max
float32[] ranges
float32[] intensities

You can also visualize using RViz the output of this sensor, just add some
objects to the gazebo scene and open RViz adding the visualization of a
LaserScan message.

IMU sensor

Finally, last sensor proposed in this document is an inertial sensor. The
Inertial Measurement Unit sensor is an electronic device that measures and
reports a body’s specific force, angular rate, and sometimes the orientation of
the body, using a combination of accelerometers, gyroscopes, and sometimes
magnetometers. Is commonly used on quadrotors to estimate their attitude,
but you can also find it on several mobile robots working in outdoor scenarios
to estimate its Yaw (orientation around Z axis). This is the xacro file for
the IMU sensor:

1 <?xml ve r s i on ="1.0"?>
2

3 <robot name=" senso r " xmlns : xacro="http ://www. ros . org /wik i / xacro">
4 <xacro : i n c lude f i l ename="$ (f i nd gazebo_sensors)/ urdf /base . xacro "/>
5 <gazebo>
6 <plug in name="imu_plugin " f i l ename="libgazebo_ros_imu . so">
7 <alwaysOn>true</alwaysOn>
8 <bodyName>sensor </bodyName>
9 <topicName>imu</topicName>

10 <serviceName>imu_service</serviceName>
11 <gauss ianNoise >0.0</gauss ianNoise>
12 <updateRate >20.0</updateRate>
13 </plugin>
14 </gazebo>
15 </robot>

The libgazebo_ros_imu publishes data on sensor_msgs/Imu message, con-
taining the sensor orientation, linear acceleration and angular velocity.

10

Gazebo plugins

Gazebo plugins help us to control the robot models, sensors, world prop-
erties, and even the way Gazebo runs. Gazebo plugins are a set of C++
code, which can be dynamically loaded/unloaded from the Gazebo simula-
tor. Using plugins, we can access all the components of Gazebo, and also it
is independent of ROS, so that it can share with people who are not using
ROS. We can mainly classify the plugins as follows:

• The world plugin: Using the world plugin, we can control the proper-
ties of a specific world in Gazebo. We can change the physics engine,
the lighting, and other world properties using this plugin.

• The model plugin: The model plugin is attached to a specific model in
Gazebo and controls its properties. The parameters, such as the joint
state of the model,control of the joints, and so on, can be controlled
using this plugin.

• The sensor plugin: The sensor plugins are for modeling sensors, such
as camera, IMU, and so on, in Gazebo.

• The system plugin: The system plugin is started along with the Gazebo
startup. A user can control a system-related function in Gazebo using
this plugin.

• The visual plugin: The visual property of any Gazebo component can
be accessed and controlled using the visual plugin.

Before starting development with Gazebo plugins, we might need to
install some packages. The Gazebo version installed along with ROSMelodic
is 9.0, so you might need to install its development package in Ubuntu using
the following command:

$ sudo apt-get install libgazebo9-dev

141

142 10. GAZEBO PLUGINS

The Gazebo plugins are independent of ROS and we don’t need ROS libraries
to build a plugin. However could be useful implement a communication
between ROS and Gazebo plugins to simplify the overall control of our
robot.

In this chapter we will see how to implement gazebo plugins from scratch
and how the inter process communication between different gazebo elements
works. Let’s start with a basic gazebo plugin.

10.1 Creating a basic world plugin
We will look at a basic Gazebo world plugin and try to build and load it in
Gazebo. In this first example, we will not link the plugin with ROS network.
Start creating a folder called hello_world_plugin in a desired location of
your system (you can also use the ROS workspace). We will store the plugin
source in the src sub-directory of this directory:

$ mkdir -p hello_world_plugin/src && cd hello_world_plugin/src
$ touch hello_world.cc

hello_world.cc source code will be useful to analyze the structure of a
basic Gazebo plugin. In the following the plugin code is reported:

1 #inc lude <gazebo/gazebo . hh>

We start with the inclusion of the header file. gazebo.hh contains core
functionalities of Gazebo. Other commonly used header file for gazebo are:

• gazebo/physics/physics.hh : This is the Gazebo header for accessing
the physics engine parameters

• gazebo/rendering/rendering.hh : This is the Gazebo header for han-
dling rendering parameters

• gazebo/sensors/sensors.hh : This is the header for handling sensors

1 namespace gazebo {
2 //The custom Worldp lug inTutor ia l s i s i n h e r i t i n g from standard worldPlugin . Each world p lug in has to i n h e r i t i n g from standard p lug in type .
3 c l a s s WorldPluginTutor ia l : pub l i c WorldPlugin {

Then. we can declare the plugin namespace. All plugins must be part of
gazebo namespace. In this example, we are implementing a WorldPlugin.

1 pub l i c : WorldPluginTutor ia l () : WorldPlugin () {
2 p r i n t f (" He l lo World ! \ n ") ;
3 }

By default Gazebo plugins have a function called Load that is automatically
invoked when the simulator loads the plugin.

10.1. CREATING A BASIC WORLD PLUGIN 143

1 //The Load func t i on can r e c e i v e the SDF elements
2 pub l i c : void Load (phys i c s : : WorldPtr _world , sd f : : ElementPtr _sdf) {
3 p r i n t f (" The p lug in has been c o r r e c t l y loaded ! \ n ") ;
4 }
5 } ;

1 // Reg i s t e r i ng World Plugin with Simulator
2 GZ_REGISTER_WORLD_PLUGIN(WorldPluginTutor ia l)
3 }

At the end of the code, we must export the plugin using the following state-
ments. The GZ_REGISTER_WORLD_PLUGIN (WorldPluginTutorial)
macro will register and export the plugin as a world plugin. The following
macros are used to register for sensors, models, and so on:

• GZ_REGISTER_MODEL_PLUGIN: This is the export macro for the Gazebo
robot model

• GZ_REGISTER_SENSOR_PLUGIN: This is the export macro for the Gazebo
sensor model

• GZ_REGISTER_SYSTEM_PLUGIN: This is the export macro for the Gazebo
system

• GZ_REGISTER_VISUAL_PLUGIN: This is the export macro for Gazebo
visuals

After setting the code, we can edit the CMakeLists.txt for compiling the
source of the plugin. Create the CMakeLists.txt in the root directory of
your source:

$ cd hello_world_plugin
$ touch CMakeLists.txt

1 cmake_minimum_required (VERSION 2.8 FATAL_ERROR)
2

3 i n c lude (FindPkgConfig)
4 i f (PKG_CONFIG_FOUND)
5 pkg_check_modules (GAZEBO gazebo)
6 end i f ()
7

8 i n c l ud e_d i r e c t o r i e s (${GAZEBO_INCLUDE_DIRS})
9 l i n k_d i r e c t o r i e s (${GAZEBO_LIBRARY_DIRS})

We need to inform the compiler about the location of the gazebo headers (i.e.
gazebo.hh). We can do this as usual with the include_directories com-
mand. We use this command including the GAZEBO_INCLUDE_DIRS variable,
that is filled thanks to the find_package instruction.

144 10. GAZEBO PLUGINS

1 add_library (hel lo_world s r c / p lug in / hel lo_world . cc)
2 t a r g e t_ l i n k_ l i b r a r i e s (he l lo_world ${catkin_LIBRARIES} ${GAZEBO_LIBRARIES})

We are now ready to compile this plugin. In particular, we have to use the
cmake and make commands:

$ cd hello_world_plugin
$ mkdir build
$ cd build
$ cmake .. && make

In previous lessons, we included plugin in robot models. In this case, we
have developed a World plugin and could be included into a Gazebo world.
Again, in past example, we just loaded the empty_world of gazebo ROS
package. Differently, let’s define a custom world including this plugin.

$ roscd hello_world_plugin
$ mkdir world && cd world
$ touch hello.world

The world file is a XML file describing the element present in the simulation
scene. In this case, we include the libhello_world.so plugin.

1 <?xml ve r s i on ="1.0"?>
2 <sd f ve r s i on ="1.4">
3 <world name=" de f au l t ">
4 <plug in name="hel lo_world " f i l ename=" l i bhe l l o_wor ld . so "/>
5 </world>
6 </sdf>

We are very close to run our plugin. However, we have to inform the Gazebo
program about the location of this new plugin. This is made updating the
value of the GAZEBO_PLUGIN_PATH variable.

export GAZEBO_PLUGIN_PATH=${GAZEBO_PLUGIN_PATH}:
/path/to/plugin/build

Finally, run the gazebo plugin:

$ cd world
$ gzserver hello.world --verbose

Now you should see the output of the plugin when it is created (Hello
World!) and when it is loaded (The plugin has been correctly loaded!).

10.1. CREATING A BASIC WORLD PLUGIN 145

10.1.1 Model plugin with ROS integration

World plugins are useful when you want to directly control the simulation
scene. A more useful plugin type is the model plugin. We can implement
this kind of plugin to handle the proprietress of a specific model of Gazebo
simulation. Let’s try to create a model plugin and attach it to the differential
driver robot.

As already stated, the differential drive controller of the robot mobile
robot defines two topics: the cmd_vel and odom topics. Let’s imagine that
we are interest in the velocity of the wheel, how could get such information
even tough the differential drive controller doesn’t publish this it? We can
write a model plugin and add it to the differential drive mobile robot. Move
into the rl_robot_description_pkg, create a plugin directory in the source
folder:

$ roscd rl_robot_description_pkg
$ mkdir -p src/plugin && cd src/plugin
$ touch wheel_vel_plugin.cpp

Let’s describe the contents of this new plugin. The goal of this plugin is to
gather information from the wheel joints from Gazebo world and publish its
content into a std_msgs::Float32MultiArray.

1 #inc lude <ros / ros . h>
2 #inc lude " std_msgs/Float32Mult iArray . h "
3 #inc lude <gazebo/gazebo . hh>
4 #inc lude <gazebo/ phys i c s / phys i c s . hh>
5

6 us ing namespace std ;

We start including the headers. We need ROS stuff but also other functional-
ities from Gazebo: the Joint class, included into the gazebo/physics/physics.hh
header. Then, we create the class plugin, part of the gazebo namespace:

1 namespace gazebo
2 {
3 c l a s s WheelsVelPlugin : pub l i c ModelPlugin
4 {

We can then start with class member declaration:

1 pr i va t e : ro s : : NodeHandle∗ _node_handle ;
2 pr i va t e : phys i c s : : ModelPtr model ;
3 pr i va t e : ro s : : Pub l i sher _w_v_pub;
4 pr i va t e : event : : ConnectionPtr updateConnection ;
5 pr i va t e : phys i c s : : Jo intPtr _front_le f t_whee l_jo int ;
6 pr i va t e : phys i c s : : Jo intPtr _front_right_wheel_joint ;
7 pr i va t e : std_msgs : : Float32Mult iArray _w_vel ;

146 10. GAZEBO PLUGINS

In the Load function we have to instantiate the node handle and initialize
the publisher of our topic. To initialize the joint handlers we will use the
GetJoint function:

1 pub l i c : void Load (phys i c s : : ModelPtr _parent , sd f : : ElementPtr _sdf) {
2 _node_handle = new ros : : NodeHandle () ;
3 model = _parent ;
4

5 _front_le f t_whee l_jo int = th i s−>model−>GetJoint (" f ront_le f t_whee l_jo int ") ;
6 _front_right_wheel_joint = th i s−>model−>GetJoint (" f ront_r ight_whee l_jo int ") ;
7 _w_v_pub = _node_handle−>adve r t i s e < std_msgs : : Float32Mult iArray >("/ d i f f_whee l s / ve l " , 0) ;
8 _w_vel . data . r e s i z e (2) ;
9 }

In particular, differently from the hello_world plugin, we need a cyclic
function that will periodically called directly by the simulator engine. We
call this function OnUpdate and the we use event based calls of this function
with the event::Events::ConnectWorldUpdateBegin class function.

1 th i s−>updateConnection = event : : Events : : ConnectWorldUpdateBegin (std : : bind(&WheelsVelPlugin : : OnUpdate , t h i s)) ;

Let’s see how is composed this function:

1 pub l i c : void OnUpdate () {
2 _w_vel . data [0] = _front_left_wheel_joint−>GetVeloc i ty (0) ;
3 _w_vel . data [1] = _front_right_wheel_joint−>GetVeloc i ty (0) ;
4 _w_v_pub. pub l i sh (_w_vel) ;
5 }

Finally, just register the plugin:

1 } ;
2

3 // Reg i s t e r t h i s p lug in with the s imu la tor
4 GZ_REGISTER_MODEL_PLUGIN(WheelsVelPlugin)
5 }

Modify the CMakeLists.txt of the package as show in the previous section
and compile the package. We are now ready to add this plugin to the robot
model. Edit the diff_robot.xacro file adding the following lines:

<plugin name="libwheels_vel" filename="libwheels_vel.so">
</plugin>

Note that, in this case we could avoid to inform the Gazebo engine about the
location of the compiled plugin modifying the GZ_REGISTER_MODEL_PLUGIN
environment variable. This happened because this plugin is compiled using
catkin, and the generated shared library is placed in the devel folder of your
workspace. This directory is already present in the gazebo configuration.

10.1. CREATING A BASIC WORLD PLUGIN 147

You can try to run again the differential drive robot and check the contents
of the topic published by the plugin.

$ roslaunch rl_robot_description_pkg spawn_diff_robot.launch
$ rostopic echo /diff_wheels/vel

148 10. GAZEBO PLUGINS

11

KDL

KDL stands for Kinematics and Dynamics Library. This library is born
with the OROCOS (Open Robots COntrol Software) project and can be
used to solve different kinematic and dynamic problems. The Kinematics
and Dynamics Library (KDL) develops an application independent frame-
work for modelling and computation of kinematic chains, such as robots,
biomechanical human models, computer-animated figures, machine tools,
etc. It provides class libraries for geometrical objects (point, frame, line,...
), kinematic chains of various families (serial, humanoid, parallel, mobile,...
), and their motion specification and interpolation.

In particular, KDL can be used for:

• Kinematics and Dynamics of kinematic chains: You can represent a
kinematic chain by a KDL Chain object, and use KDL solvers to com-
pute anything from forward position kinematics, to inverse dynamics.
The kdl_parser includes support to construct a KDL chain from a
XML Robot Description Format (URDF) file.

• Kinematics of kinematic trees: You can represent a kinematic chain
by a KDL Chain object, and use KDL solvers to compute forward
position kinematics.

The goal of this section is to provide an overview of the KDL capabilities with
the use of kinematic and dynamic solvers. We will discuss two examples:

• Kinematic: in the first example, we will see how KDL can be used to
solve forward and inverse kinematics

• Dynamic: in the second example, we use KDL to calculate dynamic
parameters of the robotic manipulator and generate the force to control
it.

However, both examples need to know the model of the robot and it’s passed
to KDL framework initializing a KDL Tree. We will see in the next section
how to create it using the URDF file.

149

150 11. KDL

kdl parser

kdl parser is a ROS package providing an easy way to construct a full KDL
Tree object. In particular, this Tree could be build manually specifying
Joints and Links or a using the URDF xml description file.

The Tree is initialized directly from the URDF file that is loaded into
the ROS parameter server. As usual we can use the launch file to fill the
robot_description parameter, then the function treeFromString made
the rest of the work:

1 std : : s t r i n g robot_desc_str ing ;
2 _nh . param (" robot_desc r ip t i on " , robot_desc_str ing , std : : s t r i n g ()) ;
3 i f (! kdl_parser : : t reeFromStr ing (robot_desc_str ing , i iwa_tree)){
4 ROS_ERROR(" Fa i l ed to cons t ruc t kdl t r e e ") ;
5 re turn f a l s e ;
6 }

We will use this procedure in the following examples.

Inverse kinematics

In this case, the forward and inverse kinematics of the robot are calculate
considering the position of its joint. Using the forward kinematic we get
the position of the robotic end effector, while with the use of an inverse
kinematic solver we calculate the desired joint values to apply to bring the
manipulator in a given location. At this point of the lessons only the salient
parts of the source code will be described. However the entire source can
be found in the iiwa_kdl package. For this example, we will use a position
controlled robot. You can start the robot with the following command:

roslaunch lbr_iiwa_description gazebo_ctrl.launch

We need to include the header files to use KDL functions:

1 #inc lude <kdl_parser / kdl_parser . hpp>
2 #inc lude <kdl / cha i n f k s o l v e rpo s_r e cu r s i v e . hpp>
3 #inc lude <kdl / cha in i k so l v e rve l_p inv . hpp>
4 #inc lude <kdl / cha i n f k s o l v e rpo s_r e cu r s i v e . hpp>
5 #inc lude <kdl / cha in ik so lve rpos_nr . hpp>

We must load the robot model, but also initialize its kinematic chain:

1 std : : s t r i n g robot_desc_str ing ;
2 _nh . param (" robot_desc r ip t i on " , robot_desc_str ing , std : : s t r i n g ()) ;
3 i f (! kdl_parser : : t reeFromStr ing (robot_desc_str ing , i iwa_tree)){
4 ROS_ERROR(" Fa i l ed to cons t ruc t kdl t r e e ") ;
5 re turn f a l s e ;
6 }

151

7

8 std : : s t r i n g base_l ink = " lbr_iiwa_link_0 " ;
9 std : : s t r i n g t ip_l ink = " lbr_iiwa_link_7 " ;

10 i f (! i iwa_tree . getChain (base_link , t ip_l ink , _k_chain)) re turn f a l s e ;
The chain is specified between two desired links. In this case, we create a
chain starting from the first link and finishing in the end effector link.

In order to retrieve the position of the end effector we use the ChainFk-
SolverPos_recursive object, initialized on the kinematic chain.

1 _fkso lve r = new KDL: : ChainFkSolverPos_recurs ive (_k_chain) ;
At the same time, the ChainIkSolverPos_NR object is used to calculate the
inverse kinematic. Among the arguments required to initialize such object.

1 _ik_solver_vel = new KDL: : ChainIkSolverVel_pinv (_k_chain) ;
2 _ik_solver_pos = new KDL: : ChainIkSolverPos_NR (_k_chain , ∗_fkso lver , ∗_ik_solver_vel , 100 , 1e−6) ;
Later than you have the joint values you can use the _fksolver object to
translate the joint position into the end effector position:

1 _fkso lver−>JntToCart (∗_q_in , _p_out) ;
The position of the end effector is stored into a KDL::Frame object. A
Frame is the 4x4 matrix that represents the pose of an object/frame with
respect to a reference frame. It contains:

• a Rotation M for the rotation of the object/frame wrt the reference
frame.

• a Vector p for the position of the origin of the object/frame in the
reference frame

KDL also provides a convenient template to store joint variables. For ex-
ample, the joint angles can be store in a JntArray variable:

1 KDL: : JntArray ∗_q_in ;
2 _q_in = new KDL: : JntArray (_k_chain . getNrOfJoints ()) ;
3 f o r (i n t i =0; i <7; i++)
4 _q_in−>data [i] = j s . p o s i t i o n [i] ;
We are now ready to control the position of the end effector using the in-
verse kinematic solver. To this aim, we need to define its target filling a
KDL::Frame object:

1 F_dest . p . data [0] = _p_out . p . x () − 0 . 2 ;
2 F_dest . p . data [1] = _p_out . p . y () ;
3 F_dest . p . data [2] = _p_out . p . z () − 0 . 1 ;
4 f o r (i n t i =0; i <9; i++)
5 F_dest .M. data [i] = _p_out .M. data [i] ;
6 i f (_ik_solver_pos−>CartToJnt (∗_q_in , F_dest , q_out) != KDL: : So l v e r I : :E_NOERROR)
7 cout << " f a i l i n g in ik ! " << endl ;

152 11. KDL

After run the simulator launch the inverse kinematic example can be ran in
this following way:

rosrun iiwa_kdl kuka_invkin_ctrl

Inverse Dynamics

In some cases, we need to exploit the dynamic of the system to improve the
performance of our controllers. In particular, inverse dynamics is a method
for computing forces and/or torques based on the kinematics (motion) of a
body and the body’s inertial properties (mass and moment of inertia). In
robotics,inverse dynamics algorithms are used to calculate the torques that
a robot’s motors must deliver to make the robot’s end-point move in the
way prescribed by its current task.

In order to test develop an inverse dynamics control algorithm, we need
a robot that can be controlled using effort: the hardware_interface Ef-
fortJointInterface must be used for the iiwa simulation. To start this new
robot model use the following command:

$ roslaunch lbr_iiwa_description gazebo_effort_controller.launch

Differently from the position controlled robot, if we don’t apply a force
command to motor joints, the robot falls down to the floor. Let’s discuss the
code of the kuka_invdyn_ctrl.cpp source. In this case, we will not rely on
a solver to implement the inverse dynamics controller, but directly calculate
the body’s inertial properties using KDL template and than implement a
PD controller to generate the torque command.

In particular, we firstly calculate the joint position error (the desired
position for robot joints against the current one):

1 Eigen : : VectorXd e = _init ia l_q−>data − _q_in−>data ; //Keep i n i t i a l p o s i t i o n

While, the velocity error consists in the inverse of the current velocity of the
robot (we want that the robot doesn’t move)

1 Eigen : : VectorXd de = −_dq_in−>data ; //Des i red v e l o c i t y : 0

Then, we calculate the intertia matrix, the coriolis terms and the gravity
temrs:

1 _dyn_param−>JntToMass (∗_q_in , jsim_) ;
2 _dyn_param−>JntToCor io l i s (∗_q_in , ∗_dq_in , co r i o l_) ;
3 _dyn_param−>JntToGravity (∗_q_in , grav_) ;

To access to dynamic parameters we use the _dyn_param object.

1 KDL: : ChainDynParam ∗_dyn_param ;
2 _dyn_param = new KDL: : ChainDynParam(_k_chain ,KDL: : Vector (0 , 0 , −9 .81)) ;

Finally, we can calculate the effort command:

153

1 Eigen : : VectorXd q_out = jsim_ . data ∗ (Kd∗de + Kp∗e) + cor i o l_ . data + grav_ . data ;

To run this example, after launched the gazebo simulator use the following
command

rosrun iiwa_kdl kuka_invdyn_ctrl

11.0.1 Exercise

In order to merge the knowledge about the ROS Gazebo plugins and KDL,
develop a Gazebo plugin to calculate and apply the CLIK algorithm on the
IIWA robot simulated in ROS. In particular, the developed plugin must take
as input the desired position of the manipulator, while should apply the q
values generated with KDL library.

154 11. KDL

12

EIGEN libraries

In previous section, we used an external library to simplify mathematics and
linear algebra operations: EIGEN.

Eigen is a high-level C++ library of template headers for linear alge-
bra, matrix and vector operations, geometrical transformations, numerical
solvers and related algorithms.

To install Eigen you just need to download and extract Eigen’s source
code. In fact, the header files in the Eigen subdirectory are the only files
required to compile programs using Eigen. The header files are the same for
all platforms. It is not necessary to use CMake or install anything. You can
also install Eigen using apt

$ sudo apt-get install libeigen3-dev

While, to use in a cpp program, you need to include the following lines into
the CMakeLists.txt file.

1 f ind_package (Eigen3 REQUIRED)
2 i n c l ud e_d i r e c t o r i e s (${Eigen_INCLUDE_DIRS})

12.0.1 Data types

Using Eigen a convenient way to define matrix and vectors are provided. You
can specify both static and dynamic variables. In particular, if you want to
set at run time the dimension of a matrix or a vector use the following code.

1 #inc lude <iostream>
2 #inc lude <Eigen/Dense>
3

4 us ing namespace Eigen ;
5 us ing namespace std ;
6

7 i n t main ()

155

156 12. EIGEN LIBRARIES

8 {
9 MatrixXd m = MatrixXd : : Random(3 , 3) ;

10 m = (m + MatrixXd : : Constant (3 , 3 , 1 . 2)) ∗ 50 ;
11 cout << "m =" << endl << m << endl ;
12 VectorXd v (3) ;
13 v << 1 , 2 , 3 ;
14 cout << "m ∗ v =" << endl << m ∗ v << endl ;
15 }

While, if you want to set such sizes statically:

1 #inc lude <iostream>
2 #inc lude <Eigen/Dense>
3

4 us ing namespace Eigen ;
5 us ing namespace std ;
6

7 i n t main ()
8 {
9 Matrix3d m = Matrix3d : : Random () ;

10 m = (m + Matrix3d : : Constant (1 . 2)) ∗ 50 ;
11 cout << "m =" << endl << m << endl ;
12 Vector3d v (1 , 2 , 3) ;
13

14 cout << "m ∗ v =" << endl << m ∗ v << endl ;
15 }

Using such structures you can access to different functionalities to solve
common problem in robotics. Check the Quick reference guide to have
an overview about the capabilities: https://eigen.tuxfamily.org/dox/
group__QuickRefPage.html. To have a briefly idea of Eigen functionalities,
imagine that you want to calculate the pseudo inverse of a matrix. This task
is not trivial using standard libraries or without matlab. The Eigen version
is here reported:

1 Eigen : : Matrix<f l o a t , 6 , 4> M_matrix ;
2 M_matrix << 0 , 0 , 0 , 0 ,
3 0 , 0 , 0 , 0 ,
4 kf , kf , kf , kf ,
5 (0 . 707∗L∗ kf) , (0 . 707∗L∗ kf) , −(0.707∗L∗ kf) , −(0.707∗L∗ kf) ,
6 −(0.707∗L∗ kf) , (0 . 707∗L∗ kf) , (0 . 707∗L∗ kf) , −(0.707∗L∗ kf) ,
7 km, −km, km, −km;
8

9

10 Eigen : : Matrix<f l o a t , 4 , 6> M_matrix_pinv = M_matrix . completeOrthogonalDecomposit ion () . pseudoInverse () ;

https://eigen.tuxfamily.org/dox/group__QuickRefPage.html
https://eigen.tuxfamily.org/dox/group__QuickRefPage.html

13

ROS Navigation stack

Navigation stack contains a set of powerful tools and libraries to work mainly
for mobile robot navigation. The Navigation stack contains ready-to-use
navigation algorithms which can be used in mobile robots, especially for
differential wheeled robots. Using these stacks, we can make the robot
autonomous, and that is the final concept that we are going to see in the
Navigation stack.

The main aim of the ROS Navigation package is to move a robot from
the start position to the goal position, without making any collision with the
environment. The ROS Navigation package comes with an implementation
of several navigation-related algorithms which can easily help implement
autonomous navigation in the mobile robots. The user only needs to feed the
goal position of the robot and the robot odometry data from sensors such as
wheel encoders, IMU, and GPS, along with other sensor data streams, such
as laser scanner data or 3D point cloud from sensors such as depth sensor.
The output of the Navigation package will be the velocity commands that
will drive the robot to the given goal position.

The Navigation stack contains the implementation of the standard al-
gorithms, such as SLAM, A *(star), Dijkstra, amcl, and so on, which can
directly be used in our application.

The ROS Navigation stack is designed as generic. There are some hard-
ware requirements that should be satisfied by the robot. The following are
the requirements:

• The Navigation package will work better in differential drive and holo-
nomic (total DOF of robot equals to controllable DOF of robots). Also,
the mobile robotshould be controlled by sending velocity commands
in the form of linear and angular velocity.

• The robot should be equipped with a vision (rgb-d) or laser sensor to
build the map of the environment.

• The Navigation stack will perform better for square and circular shaped

157

158 13. ROS NAVIGATION STACK

mobile bases. It will work on an arbitrary shape, but performance is
not guaranteed.

The modules of the Navigation stack are depicted in Fig. 13.1 and are
discussed in the following.

IMG/Ch11/2nav_module.png

Figure 13.1: Robot navigation modules using ROS

According to the Navigation stack diagram reported in Fig. 13.1, for
configuring the Navigation package for a custom robot, we must provide
functional blocks that interface to the Navigation stack. The following are
the explanations of all the blocks which are provided as input to the Navi-
gational stack:

• Odometry source: Odometry data of a robot gives the robot position
with respect to its starting position. The main odometry sources are
wheel encoders, IMU, and 2D/3D cameras (visual odometry). The
odom value should publish to the Navigation stack, which has a mes-
sage type of nav_msgs/Odometry. The odom message can hold the
position and the velocity of the robot. Odometry data is a mandatory
input to the Navigational stack.

• Sensor source: We have to provide laser scan data or point cloud
data to the Navigation stack for mapping the robot environment.
This data, along with odometry, combines to build the global and
local cost map of the robot. The main sensors used here are Laser
Range finders or Kinect 3D sensors. The data should be of type
sensor_msgs/LaserScan or sensor_msgs/PointCloud.

• sensor transforms/tf: The robot should publish the relationship be-
tween the robot coordinate frame using ROS tf.

• base_controller: The main function of the base controller is to con-
vert the output of the Navigation stack, which is a twist (geome-
try_msgs/Twist) message, and convert it into corresponding motor
velocities of the robot.

The optional nodes of the Navigation stack are amcl and map server,
which allow localization of the robot and help to save/load the robot map.

13.1 Move base
The move_base node is from a package called move_base. The main func-
tion of this package is to move a robot from its current position to a goal

13.1. MOVE BASE 159

position with the help of other navigation nodes. The move_base node
inside this package links the global-planner and the local-planner for the
path planning, connecting to the rotate-recovery package if the robot is
stuck in some obstacle and connecting global costmap and local costmap
for getting the map. The move_base node is basically an implementation
of SimpleActionServer, which takes a goal pose with message type (geome-
try_msgs/PoseStamped). We can send a goal position to this node using a
SimpleActionClient node. The move_base node subscribes the goal from a
topic called move_base_simple/goal, which is the input of the Navigation
stack, as shown in the previous diagram. When this node receives a goal
pose, it links to components such as global_planner, local_planner, recov-
ery_behavior, global_costmap, and local_costmap, generates the output,
which is the command velocity (geometry_msgs/Twist), and sends it to the
base controller for moving the robot for achieving the goal pose.

The following is the list of all the packages which are linked by the
move_base node:

• global-planner: This package provides libraries and nodes for planning
the optimum path from the current position of the robot to the goal
position, with respect to the robot map. This package has the imple-
mentation of path-finding algorithms, such as A*, Dijkstra, and so on,
for finding the shortest path from the current robot position to the
goal position.

• local-planner: The main function of this package is to navigate the
robot in a section of the global path planned using the global planner.
The local planner will take the odometry and sensor reading, and send
an appropriate velocity command to the robot controller for complet-
ing a segment of the global path plan. The base local planner package
is the implementation of the trajectory rollout and dynamic window
algorithms.

• costmap-2D: The main use of this package is to map the robot envi-
ronment. The robot can only plan a path with respect to a map. In
ROS, we create 2D or 3D occupancy grid maps, which is a representa-
tion of the environment in a grid of cells. Each cell has a probability
value that indicates whether the cell is occupied or not. The costmap-
2D package can build the grid map of the environment by subscribing
sensor values of the laser scan or point cloud and also the odometry
values. There are global cost maps for global navigation and local cost
maps for local navigation.

The following are the other packages which are interfaced to the move_base
node:

• map-server: The map-server package allows us to save and load the
map generated by the costmap-2D package.

160 13. ROS NAVIGATION STACK

• AMCL: AMCL (Adaptive Monte Carlo Localization) is a method to
localize the robot in a map. This approach uses a particle filter to
track the pose of the robot with respect to the map, with the help
of probability theory. In the ROS system, AMCL accepts a sen-
sor_msgs/LaserScan to create the map.

• gmapping: The gmapping package is an implementation of an algo-
rithm called Fast SLAM, which takes the laser scan data and odometry
to build a 2D occupancy grid map.

After discussing each functional block of the Navigation stack, let’s see
how it really works. To do this, the robot should publish a proper odometry
value, TF information, and sensor data from the laser, and have a base
controller and map of the surroundings.

13.1.1 Localization and mapping

To navigate unknown environments a robot must be able to build a map.
This process is called mapping. In addition, during the navigation the robot
should also be able to localize during the map it is creating: this process
is called localization. Since these two steps are made in the same time it
is called SLAM: simultaneous localization and mapping. One of the
most famous tools to do 2D SLAM is called gmapping. The ROS Gmapping
package is a wrapper of the open source implementation of SLAM, called
OpenSLAM (https://www.openslam.org/gmapping.html). The package
contains a node called slam_gmapping, which is the implementation of
SLAM and helps to create a 2D occupancy grid map from the laser scan
data and the mobile robot pose. The basic hardware requirement for doing
SLAM is a laser scanner which is horizontally mounted on the top of the
robot, and the robot odometry data.

Let’s try to use gmapping on the differential drive robot. This robot is
quite ready to been used with gmapping, since it is already endowed with a
laser scanner, and the odometry data are provided by the differential drive
robot plugin. Start installing gmapping ROS wrapper:

$ sudo apt-get install ros-melodic-gmapping

As usual, we need to create a proper launch file to start 2d SLAM.

1 <?xml ve r s i on ="1.0" ?>
2 <launch>
3 <arg name="scan_topic " d e f au l t ="/ l a s e r / scan " />
4 <!−− Def in ing parameters f o r slam_gmapping node −−>
5 <node pkg="gmapping " type="slam_gmapping " name="slam_gmapping " output=" sc r e en ">

The node to start is the slam_gmapping node from the gmapping pack-
age. In order to be informed about the output of the node we include the

https://www.openslam.org/gmapping.html

13.1. MOVE BASE 161

output="screen" option. This launch file also contains an argument: the
scan_topic who reports the name of the topic in which the scan data are
published.

1 <param name="base_frame " value="base_l ink "/>
2 <param name="odom_frame " value="odom"/>

Two additional parameters are used to specify the reference frames of the
robotic based and the odometry, respectively. Other parameters are used to
tune the behavior of the SLAM algorithm.

1 <param name="map_update_interval " va lue ="5.0"/>
2 <param name="maxUrange " va lue ="6.0"/>
3 <param name="maxRange " va lue ="8.0"/>
4 <param name="sigma " value ="0.05"/>
5 <param name=" k e rn e l S i z e " va lue="1"/>
6 <param name=" l s t e p " va lue ="0.05"/>
7 <param name="astep " va lue ="0.05"/>
8 <param name=" i t e r a t i o n s " va lue="5"/>
9 <param name=" ls igma " value ="0.075"/>

10 <param name="ogain " va lue ="3.0"/>
11 <param name=" l s k i p " va lue="0"/>
12 <param name="minimumScore " va lue="100"/>
13 <param name=" s r r " va lue ="0.01"/>
14 <param name=" s r t " va lue ="0.02"/>
15 <param name=" s t r " va lue ="0.01"/>
16 <param name=" s t t " va lue ="0.02"/>
17 <param name=" l inearUpdate " va lue ="0.5"/>
18 <param name="angularUpdate " va lue ="0.436"/>
19 <param name="temporalUpdate " va lue="−1.0"/>
20 <param name="resampleThreshold " va lue ="0.5"/>
21 <param name=" p a r t i c l e s " va lue="80"/>
22 <param name="xmin " value="−1.0"/>
23 <param name="ymin " value="−1.0"/>
24 <param name="xmax" value ="1.0"/>
25 <param name="ymax" value ="1.0"/>
26 <param name="de l t a " va lue ="0.05"/>
27 <param name=" l l s amp le range " va lue ="0.01"/>
28 <param name=" l l s amp l e s t ep " va lue ="0.01"/>
29 <param name=" lasamplerange " va lue ="0.005"/>
30 <param name=" lasamples tep " value ="0.005"/>
31 <remap from="scan " to="$ (arg scan_topic)"/>
32 </node>
33 </launch>

162 13. ROS NAVIGATION STACK

Gmapping configured as is can be ran on the differential mobile robot using
the following commands:

$ roslaunch rl_robot_description_pkg spawn_diff_robot.launch
$ roslaunch rl_robot_description_pkg gmapping.launch

If everything is properly configured, the robot starts to create the environ-
ment map. In our case, the simulation scene is empty so no map can be
created. Let’s try to create a custom world in gazebo with some walls. Move
into the rl_robot_description_pkg package and create a worlds directory
with a world source file and a models directory.

$ roscd rl_robot_description_pkg
$ mkdir models
$ mkdir worlds && cd worlds
$ touch walls.world

In the models folder we will put the elements to include into the simulation
scene.

models

Models in Gazebo define a physical entity with dynamic, kinematic, and
visual properties. In addition, a model may have one or more plugins, which
affect the model’s behavior. A model can represent anything from a simple
shape to a complex robot. Even the ground is a model. Gazebo relies on a
database to store and maintain models available for use within simulation.
The model database is a community-supported resource, so please upload
and maintain models that you create and use. However, you can define
custom models. Here we will describe the Gazebo model structure.

Each model is included into a directory and must have a model.config
file in its root directory that contains meta information about the model.
The format of this model.config is:

1 <?xml ve r s i on ="1.0"?>
2

3 <model>
4 <name>My Model Name</name>
5 <vers ion >1.0</vers ion>
6 <sd f ve r s i on = ’1.5 ’>model . sdf </sdf>
7

8 <author>
9 <name>My name</name>

10 <email>name@email . address </email>
11 </author>
12

13.1. MOVE BASE 163

13 <des c r i p t i on>
14 A de s c r i p t i o n o f the model
15 </de s c r i p t i on>
16 </model>

• <name> Name of the model.

• <version> Version of this model. This is not the version of sdf that
the model uses. That information is kept in the model.sdf file.

• <sdf> The name of a SDF or URDF file that describes this model.
The version attribute indicates what SDF version the file uses, and
is not required for URDFs. Multiple <sdf> elements may be used in
order to support multiple SDF versions.

• <author> Name and contacts of the model author.

• <description> Description of the model should include.

By default, Gazebo searches for models into the ~/.gazebo/models/ di-
rectory. However, you can add additional custom folder modifying the
GAZEBO_MODEL_PATH environmental variable. This time, we can do this di-
rectly from the launch file, with the following line:

1 <env name="GAZEBO_MODEL_PATH" value="$ (f i nd r l_robot_descr ipt ion_pkg)/models : $ (optenv GAZEBO_MODEL_PATH) " />

The model provided with this package is the grey_wall model.

world

As for the world specification file, it is a sdf file format. The main elements
of this file are the included models from the gazebo models stack.

1 <?xml ve r s i on ="1.0" ?>
2 <sd f ve r s i on ="1.5">
3 <world name=" de f au l t ">
4 <scene>
5 <ambient >0.0 0 .0 0 .0 1.0</ambient>
6 <shadows>0</shadows>
7 </scene>
8 <inc lude>
9 <uri>model : // ground_plane</ur i>

10 </inc lude>
11 <inc lude>
12 <uri>model : // sun</ur i>
13 </inc lude>
14

164 13. ROS NAVIGATION STACK

15 <inc lude>
16 <pose> 3 .8 −3.04 0 .02 0 0 0.0</pose>
17 <uri>model : // grey_wall</ur i>
18 </inc lude>
19 </world>
20 </sdf>

In this case, we include the grey walls models. To load the world file we
must use the world_name argument of gazebo ros:

1 <arg name="world_name " value="$ (f i nd r l_robot_descr ipt ion_pkg)/ worlds / wa l l s . world"/>

The composed world is shown in Fig. 13.2. We are now ready to test

Figure 13.2: Gazebo scene used for SLAM

gmapping on this custom world. Launch the custom world file with the
differential drive robot. Then, launch the gmapping.launch launch file. Then
use the teleoperation node to move the robot into the environment.

We can launch RViz and add a display type called Map and the topic
name as /map.The following image shows the completed map of the envi-
ronment shown in RViz is reported in Fig. 13.3.

We can save the built map using the following command. This command
will listen to the map topic and save into the image. The map server package
does this operation.

$ rosrun map_server map_saver -f walls

13.2. ROBOT LOCALIZATION 165

Figure 13.3: Map topic displayed in RViz using the map frame

The map file is stored as two files: one is the YAML file, which con-
tains the map metadata and the image name, and second is the image,
which has the encoded data of the occupancy grid map. In order to find
and correctly load the map in the ROS system, move these files into the
rl_robot_description_pkg folder, into a maps directory.

13.1.2 Map representation

There are mainly two ways to represent maps in ROS. The representation
type strictly depends on the dimension of the world space. In particular,
if you want to represent a 2d world, you can use an Occupancy Grid Map
(nav_msgs/OccupancyGrid). If your sensor and your motion planning algo-
rithms work in a 3d world, is better to use Octomap (we will discuss about
octomap in further lessons).

grid map An occupancy grid map maps the environment as a grid of cells.
The cell size typically ranges from 5 to 50 centimeters and each cell holds a
probability value that the cell is occupied in the range between 0 and 100 (0
means that the location is totally free). Other cells can be unexplored and
their value is -1.

As for their visualization, considering the Fig. 13.3, the clear gray cells
represent free regions of space while the black cells encode obstacles.

13.2 Robot localization

In several cases, robots are programmed to work everyday in the same en-
vironment (i.e. a warehouse, a museum and so on). For this reason, could

166 13. ROS NAVIGATION STACK

be useful to create a map of the static object of the operative environment
of the robot, in order to simplify the role of the robot during its opera-
tions. Of course, if the robot is endowed with a map of the environment,
the SLAM problem consists only in the Localization part. One popular way
to solve localization problem is to use amcl algorithm (augmented monte
carlo localization) to localize a robot into a given map.

13.2.1 AMCL

The ROS amcl package provides nodes for localizing the robot on a static
map. The amcl node subscribes the laser scan data, laser scan based maps,
and the TF information from the robot. The amcl node estimates the pose
of the robot on the map and publishes its estimated position with respect
to the map.

If we create a static map from the laser scan data, the robot can au-
tonomously navigate from any pose of the map using amcl and the move_base
nodes. The first step is to create a launch file for starting the amcl node.
The amcl node is highly customizable and we can configure it with several
parameters.

amcl takes in a laser-based map, laser scans, and transform messages,
and outputs pose estimates. On startup, amcl initializes its particle filter
according to the parameters provided. Note that, because of the defaults,
if no parameters are set, the initial filter state will be a moderately sized
particle cloud centered about (0,0,0). The in and out topics are reported in
the following:

• Subscribed Topics

– scan (sensor_msgs/LaserScan): Laser scan data
– tf (tf/tfMessage): Transforms.
– initialpose (geometry_msgs/PoseWithCovarianceStamped): Mean

and covariance with which to (re-)initialize the particle filter.
– map (nav_msgs/OccupancyGrid): When the use_map_topic pa-

rameter is set, AMCL subscribes to this topic to retrieve the map
used for laser-based localization.

• Published Topics

– amcl_pose (geometry_msgs/PoseWithCovarianceStamped): Robot’s
estimated pose in the map, with covariance.

– particlecloud (geometry_msgs/PoseArray): The set of pose esti-
mates being maintained by the filter.

– tf (tf/tfMessage): Publishes the transform from odom (which can
be remapped via the odom_frame_id parameter) to map.

13.2. ROBOT LOCALIZATION 167

In the previous section we have saved a map of the environment. Let’s now
try to start the localization algorithm.

Start installing the amcl package in your system.

$ sudo apt-get install ros-melodic-amcl

Now, we can create the proper launch file for amcl:

1 <launch>
2 <arg name="map_file " d e f au l t="$ (f i nd r l_robot_descr ipt ion_pkg)/maps/ wa l l s . yaml " />
3 <node name="map_server " pkg="map_server " type="map_server " args="$ (arg map_file) " />

First of all we need to load the map. To this aim, we use the map_server.
We already used this package to save the map, with the map_saver node.
In this case, we want to use this node to load the saved map and publish it
on a topic called /map.

1 <arg name="use_map_topic " d e f au l t=" f a l s e "/>
2 <arg name="scan_topic " d e f au l t ="/ l a s e r / scan"/>
3 <arg name=" in i t i a l_pose_x " d e f au l t ="0.0"/>
4 <arg name=" in i t i a l_pose_y " d e f au l t ="0.0"/>
5 <arg name=" in i t i a l_pose_a " d e f au l t ="0.0"/>
6

7 <node pkg="amcl " type="amcl " name="amcl">

Then we can launch the amcl node.

1 <param name="use_map_topic " va lue=" true "/>
2 <param name="odom_model_type " value=" d i f f "/>
3 <param name="odom_alpha5 " value ="0.1"/>
4 <param name="gui_publ ish_rate " va lue ="10.0"/>
5 <param name="laser_max_beams " va lue="60"/>
6 <param name="laser_max_range " va lue ="12.0"/>
7 <param name="min_part i c l e s " va lue="500"/>
8 <param name="max_part ic les " va lue="2000"/>
9 <param name="kld_err " va lue ="0.05"/>

10 <param name="kld_z " value ="0.99"/>
11 <param name="odom_alpha1 " value ="0.2"/>
12 <param name="odom_alpha2 " value ="0.2"/>
13 <param name="odom_alpha3 " value ="0.2"/>
14 <param name="odom_alpha4 " value ="0.2"/>
15 <param name=" laser_z_hit " va lue ="0.5"/>
16 <param name=" laser_z_short " va lue ="0.05"/>
17 <param name="laser_z_max " value ="0.05"/>
18 <param name="laser_z_rand " value ="0.5"/>
19 <param name=" laser_sigma_hit " va lue ="0.2"/>
20 <param name="laser_lambda_short " va lue ="0.1"/>

168 13. ROS NAVIGATION STACK

21 <param name="laser_model_type " va lue=" l i k e l i h o o d_ f i e l d "/>
22 <param name=" laser_l ike l ihood_max_dist " va lue ="2.0"/>
23 <param name="update_min_d " value ="0.25"/>
24 <param name="update_min_a " value ="0.2"/>
25 <param name="odom_frame_id " va lue="odom"/>
26 <param name="base_frame_id " value="base_l ink "/>
27 <param name=" resample_interva l " va lue="1"/>
28 <param name=" trans form_to le rance " va lue ="1.0"/>
29 <param name="recovery_alpha_slow " value ="0.0"/>
30 <param name="recovery_alpha_fast " va lue ="0.0"/>
31 <param name=" in i t i a l_pose_x " value="$ (arg in i t i a l_pose_x)"/>
32 <param name=" in i t i a l_pose_y " value="$ (arg in i t i a l_pose_y)"/>
33 <param name=" in i t i a l_pose_a " value="$ (arg in i t i a l_pose_a)"/>
34 <remap from="scan " to="$ (arg scan_topic)"/>
35 </node>
36 </launch>

You can launch the gazebo simulation and the amcl files and see the result
on RViz. Now, the robot is able to create a map and localize inside it.
The next step is to test the autonomous navigation using the move_base
package.

13.3 navigation using move_base

After getting the current position of the robot, we can send a goal position
to the move_base node. The move_base node will send this goal position
to a global planner, which will plan a path from the current robot position
to the goal position. This plan is with respect to the global costmap, which
is feeding from the map server. The global planner will send this path to
the local planner, which executes each segment of the global plan. The
local planner gets the odometry and the sensor value from the move_base
node and finds a collision-free local plan for the robot. The local planner is
associated with the local costmap, which can monitor the obstacle(s) around
the robot.

Since move_base implements some action server to allow the navigation
of the robot, we can write an action client to perform the generation of
the path. However, in our first example we can use RViz user interface to
perform the robot navigation.

Start writing the launch file for the move_base package. Let’s firstly in-
troduce some configuration files involved into the planning process. In par-
ticular, we have to configure the 2d costmap, the local and global planners,
and the move_base controller. The configuration of these module relies on
yaml files and are included into the conf folder of the rl_robot_description_pkg
package. In particular, we have the following file:

13.3. NAVIGATION USING MOVE_BASE 169

• costmap_common_params.yaml: This file specifies the sensor topics
they should listen to for updating the costmap. In addition, we have to
include a thresholds on obstacle information like the obstacle_range
parameter who determines the maximum range sensor reading that
will result in an obstacle being put into the costmap. Finally, we can
include information about the sensor information with this line:

laser_scan_sensor:
{sensor_frame: frame_name, data_type: LaserScan,
topic: topic_name, marking: true, clearing: true}

• global_costmap_params.yaml: In the global costmap parameter file
the frame reference for the map (usually we set /map) and additionally
parameters.

• local_costmap_params.yaml: In this file we have the same parameter
for the local costmap planner, but considered for the local map.

• dwa_local_planner_params.yaml: This file contains the configura-
tion of the DWAPlannerROS base local planner, like the maximum
linear and angular velocity, trajectory tolerances and so on.

• move_base_params.yaml: This contains configuration of the move_base
package.

Let’s now write the launch file for move_base: the move_base.launch.

1 <launch>
2 <arg name="odom_topic " d e f au l t="odom" />
3

4 <node pkg="move_base " type="move_base " respawn=" f a l s e " name="move_base " output=" sc r e en ">
5 <rosparam f i l e ="$ (f i nd r l_robot_descr ipt ion_pkg)/param/costmap_common_params . yaml " command=" load " ns=" local_costmap " />
6 <rosparam f i l e ="$ (f i nd r l_robot_descr ipt ion_pkg)/param/ local_costmap_params . yaml " command=" load " />
7 <rosparam f i l e ="$ (f i nd r l_robot_descr ipt ion_pkg)/param/global_costmap_params . yaml " command=" load " />
8 <rosparam f i l e ="$ (f i nd r l_robot_descr ipt ion_pkg)/param/dwa_local_planner_params . yaml " command=" load " />
9 <rosparam f i l e ="$ (f i nd r l_robot_descr ipt ion_pkg)/param/move_base_params . yaml " command=" load " />

10

11 </node>
12 </launch>

In this file we mainly load the configuration files described above. If you
don’t have move_base installed in your system, you should install it with
the following command:

$ sudo apt-get install ros-melodic-move-base
ros-melodic-move-base-msgs

170 13. ROS NAVIGATION STACK

The move_base package can be used both with the SLAM and AMCL
packages. Let’s try to use it with the SLAM module. We can start the
whole system using the prepared launch files.

$ roslaunch rl_robot_description_pkg walls_world.launch
$ roslaunch rl_robot_description_pkg gmapping.launch
$ roslaunch rl_robot_description_pkg move_base.launch

At this point, you could be able to send a goal point to the move_base
server using RViz. Open Rviz:

$ rviz

Then, is possible to use the 2D Nav Goal button of RViz bar to send the
goal on the map, as shown in Fig. 13.4. You can also add the visualization

Figure 13.4: RViz navigation plugin.

of the path generated by the local and global planners.

cpp move base client

Of course, is much more useful to use the move_base action from a client
code. The following code shows an example of move_base action client.

1 #inc lude " ro s / ro s . h "
2 #inc lude <move_base_msgs/MoveBaseAction . h>
3 #inc lude <a c t i o n l i b / c l i e n t / s imple_act ion_c l i ent . h>
4

5

6 i n t main (i n t argc , char ∗∗ argv) {

13.3. NAVIGATION USING MOVE_BASE 171

7

8 ro s : : i n i t (argc , argv , " move_base_client ") ;
9 ro s : : NodeHandle nh ;

10 a c t i o n l i b : : S impleAct ionCl ient<move_base_msgs : : MoveBaseAction> ac (" move_base " , t rue) ;
11 ac . waitForServer () ; // w i l l wait f o r i n f i n i t e time
12

13 move_base_msgs : : MoveBaseGoal goa l ;
14 goa l . target_pose . header . frame_id = "map " ;
15 goa l . target_pose . pose . p o s i t i o n . x = 5 . 0 ;
16 goa l . target_pose . pose . o r i e n t a t i o n .w = 1 . 0 ;
17

18 ac . sendGoal (goa l) ;
19 bool done = f a l s e ;
20 ro s : : Rate r (1 0) ;
21 whi le (! done) {
22 i f (ac . g e tS ta t e () == a c t i o n l i b : : S impleCl i entGoalState : :SUCCEEDED | |
23 ac . ge tS ta t e () == a c t i o n l i b : : S impleCl i entGoalState : :PREEMPTED) {
24 done = true ;
25 }
26 r . s l e e p () ;
27 }
28 }

	Chapter 1 - Robot Operating System
	History of ROS
	ROS Distributions
	Robot Operating System

	Robotics programming technologies
	Linux Operating System
	Install Linux
	Basic Linux commands
	Basic Linux concepts

	Introduction to C++ programming
	Compilation using make

	git

	Starting with ROS programming (Part 1)
	Environment configuration
	Create a ROS package
	ROS Service

	Working with ROS actionlib
	ROS Action messages
	Additional ROS tools

	Robot Modeling
	starting with robot modeling
	RViz with robot model

	Robot modeling using URDF
	Pan-tilt robot model
	Display Robot Models in RViz
	Robot modeling using XACRO

	Robot Modeling using xacro
	xacro format

	Simulation in robotics
	Coppelia Sim
	Starting with Coppelia Sim
	CoppeliaSim - ROS interface
	CoppeliaSim GUI
	Programming ROS scene with CoppeliaSim
	Exercise 7

	Gazebo ROS
	Configure a robotic arm for Gazebo simulation
	Gazebo plugins
	Use the gazebo_ros_control plugin
	Control a simulated robot using ros_control
	Interfacing joint state controllers and joint position controllers to the arm
	CoppeliaSim vs Gazebo ROS

	Mobile robotics
	Creating a robot model for the differential drive mobile robot
	Simulate differential mobile robot in Gazebo
	Control the differential drive robot

	Gazebo sensor simulation

	Gazebo plugins
	Creating a basic world plugin
	Model plugin with ROS integration

	KDL
	Exercise 8

	EIGEN libraries
	Data types

	ROS Navigation stack
	Move base
	Localization and mapping
	Map representation

	Robot localization
	AMCL

	navigation using move_base

