
Constraint Satisfaction Problems

prof. Antonino Staiano

M.Sc. In ’’Machine Learning e Big Data’’ - University Parthenope of Naples

LESSON 9

Artificial Intelligence



Constraint Satisfaction Problem

• The basic idea of a CSP is 
• having some number of variables that need to take on some values, figure 

out what values each of those variables should take on
• However, the variables are subject to particular constraints that are going 

to limit what values those variables can actually take on

• Let’s take a look at a real-world example …



CSP Example: Exam Scheduling

1

2

3

4

Student:

1

2

3

4

Student: Taking classes:

A B C

B D E

C E F

E F G

1

2

3

4

Student: Taking classes:

A B C

B D E

C E F

E F G

Exam slots:

Monday

Tuesday

Wednesday



CSP Example: Exam Scheduling

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G



CSP Example: Exam Scheduling

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G



CSP Example: Exam Scheduling

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G



CSP Example: Exam Scheduling

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G



CSP Example: Exam Scheduling

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G



CSP Example: Exam Scheduling

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G



CSP Example: Exam Scheduling

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G



CSP Example: Exam Scheduling

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G



CSP Example: Exam Scheduling

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G



Constraint Graph for Exam Scheduling

• We end up with a graphical representation 
of all the variables and the constraints 
between those variables

• In this case, the constraints are inequality
constraints
• e.g., the A-B edge means that the values A takes 

on cannot be the same as B values 

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G



Constraint Satisfaction Problem

• Set of variables {X1, X2, …, Xn}

• Set of domains for each variable {D1, D2, …, Dn}

• Set of constraints C

• CSPs deal with assignments of values to variables
• A complete assignment is one in which every variable is assigned a value, and a solution to 

a CSP is a consistent, complete assignment
• A partial assignment is one that leaves some variables unassigned
• A partial solution is a partial assignment that is consistent



Constraint Satisfaction Problem: Sudoku

Variables

{(0, 2), (1, 1), (1, 2), (2, 0), ...}

Domains

{1, 2, 3, 4, 5, 6, 7, 8, 9}
for each variable

Constraints

{(0, 2) ≠ (1, 1) ≠ (1, 2) ≠ (2, 0), ...}

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

Variables

{(0, 2), (1, 1), (1, 2), (2, 0), ...}

Domains

{1, 2, 3, 4, 5, 6, 7, 8, 9}
for each variable

Constraints

{(0, 2) ≠ (1, 1) ≠ (1, 2) ≠ (2, 0), ...}

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9



Exam Scheduling Problem Formulation

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G

A

B C

D

E

F

G

Variables

{A, B, C, D, E, F, G}

Domains

{Monday, Tuesday, Wednesday}
for each variable

Constraints
{A≠B, A≠C, B≠C, B≠D, B≠E, C≠E, 
C≠F, D≠E, E≠F, E≠G, F≠G}



Constraints

• Hard
• Constraints that must be satisfied in a correct solution

• Soft
• Constraints that express some notion of which solutions are preferred over 

others
• The goal is to try to maximize the preference, that is, the preferences should be 

satisfied as much as possible

Variables

{(0, 2), (1, 1), (1, 2), (2, 0), ...}

Domains

{1, 2, 3, 4, 5, 6, 7, 8, 9}
for each variable

Constraints

{(0, 2) ≠ (1, 1) ≠ (1, 2) ≠ (2, 0), ...}

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9



Exam Scheduling as a Hard Constraint Problem

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G



Unary and Binary Constraints

• Unary
• Constraint involving only one variable

• {A ≠ Monday}

• Binary
• Constraint involving two variables

• {A ≠ B}



Node Consistency

• When all the values in a variable’s domain satisfy the variable’s 
unary constraints

A B

{Mon, Tue, Wed} {Mon, Tue, Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}

A B

{Mon, Tue, Wed} {Mon, Tue, Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}



Node Consistency

A B

{Mon, Tue, Wed} {Mon, Tue, Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}

A B

{Mon, Tue, Wed} {Mon, Tue, Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}



Node Consistency

A B

{Tue, Wed} {Mon, Tue, Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}

A B

{Mon, Tue, Wed} {Mon, Tue, Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}



Node Consistency
A B

{Tue, Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}

{Mon, Tue, Wed}
A B

{Tue, Wed} {Mon, Tue, Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}



Node Consistency
A B

{Tue, Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}

{Mon, Tue, Wed}
A B

{Tue, Wed} {Mon, Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}



Node Consistency

A B

{Tue, Wed} {Mon, Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}

A B

{Tue, Wed} {Mon, Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}



Node ConsistencyA B

{Tue, Wed} {Mon, Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}

A B

{Tue, Wed} {Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}



Node Consistency

• We have easily enforced node consistency

• However, different types of consistency can be considered …

A B

{Tue, Wed} {Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}

A B

{Mon, Tue, Wed} {Mon, Tue, Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}



Arc Consistency

• When all the values in a variable’s domain satisfy the variable’s 
binary constraints

• To make X arc-consistent with respect to Y, remove elements from 
X’s domain until every choice for X has a possible choice for Y



Arc Consistency

A B

{Tue, Wed} {Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}

A B

{Mon, Tue, Wed} {Mon, Tue, Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}



Arc Consistency

A B

{Tue, Wed} {Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}

A B

{Tue, Wed} {Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}



Arc Consistency
A B

{Tue, Wed} {Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}

A B

{Tue} {Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}



Arc Consistency

function REVISE(csp, X, Y):

revised = false

for x in X.domain:

if no y in Y.domain satisfies constraint for (X,Y):

delete x from X.domain

revised = true

return revised



AC-3 Algorithm for Arc Consistency

function AC-3(csp):

queue = all arcs in csp

while queue non-empty:

(X,Y)= DEQUEUE(queue)

if REVISE(csp, X, Y):

if size of X.domain == 0:

return false

for each Z in X.neighbors - {Y}:

ENQUEUE(queue, (Z, X))

return true



Arc Consistency on a Graph

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G



Arc Consistency on a Graph

A

B C

D

E

F

G

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Search Problems

• Initial state
• Actions
• Transition model
• Goal test
• Path cost function



CSPs as Search Problems

• Initial state: 
• empty assignment (no variables)

• Actions: 
• add a {variable = value} to assignment

• Transition model: 
• shows how adding an assignment changes the assignment

• Goal test: 
• check if all variables assigned and constraints all satisfied

• Path cost function: 
• all paths have the same cost



Backtracking Search

• The search algorithm generally used for CSPs is Backtracking 
Search

• Idea 
• Go ahead and make assignments from variables to values

• If we arrive at a place where there is no way we can make any forward progress, while 
still preserving the constraints that we need to enforce, we’ll go ahead and backtrack 
and try something else instead



Backtracking Search

function BACKTRACK(assignment, csp):

if assignment complete: return assignment

var = SELECT-UNASSIGNED-VAR(assignment, csp)

for value in DOMAIN-VALUES(var, assignment):

if value consistent with assignment:

add {var = value} to assignment

result = BACKTRACK(assignment, csp)

if result ≠ failure: return result

remove {var = value} from assignment

return failure



Backtracking in Practice

A

B C

D

E

F

G

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Backtracking in Practice

A

B C

D

E

F

G

Mon

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Backtracking in Practice

A

B C

D

E

F

G

Mon

Mon

{Mon, Tue, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Backtracking in Practice

A

B C

D

E

F

G

Mon

Mon

{Mon, Tue, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

{Mon, Tue, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Mon

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Mon

Mon {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Mon

Mon {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Mon

Tue {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Mon

Tue {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Mon

Wed {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Mon

Wed {Mon, Tue, Wed}

{Mon, Tue, Wed}

Mon



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Mon

Wed {Mon, Tue, Wed}

{Mon, Tue, Wed}

Mon



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Mon

Wed {Mon, Tue, Wed}

{Mon, Tue, Wed}

Tue



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Mon

Wed {Mon, Tue, Wed}

{Mon, Tue, Wed}

Tue



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Mon

Wed {Mon, Tue, Wed}

{Mon, Tue, Wed}

Wed



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Mon

Wed {Mon, Tue, Wed}

{Mon, Tue, Wed}

Wed



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Mon

Wed {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Mon

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

{Mon, Tue, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Tue

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Tue

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Wed

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Wed

Mon {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Wed

Mon {Mon, Tue, Wed}

{Mon, Tue, Wed}

Mon



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Wed

Mon {Mon, Tue, Wed}

{Mon, Tue, Wed}

Mon



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Wed

Mon {Mon, Tue, Wed}

{Mon, Tue, Wed}

Tue



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Wed

Mon {Mon, Tue, Wed}

{Mon, Tue, Wed}

Tue



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Wed

Mon {Mon, Tue, Wed}

{Mon, Tue, Wed}

Wed



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Wed

Mon {Mon, Tue, Wed}

Mon

Wed



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Wed

Mon {Mon, Tue, Wed}

Mon

Wed



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Wed

Mon {Mon, Tue, Wed}

Tue

Wed



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Wed

Mon Mon

Tue

Wed



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Wed

Mon Mon

Tue

Wed



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Wed

Mon Tue

Tue

Wed



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Wed

Mon Tue

Tue

Wed



Backtracking in Practice

A

B C

D

E

F

G

Mon

Tue

Wed

Mon Wed

Tue

Wed



Inference

• We might be clever in order to improve the 
efficiency of how we solve these sorts of 
problems

• The idea is that of inference, using our problem 
knowledge to draw conclusions in order to 
make the rest of the problem-solving process 
easier

• Let’s go back to where we got stuck the first 
time
• We dealt with B and then we went on to D

A

B C

D

E

F

G

Mon

Tue

{Mon, Tue, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Inference

A

B C

D

E

F

G

Mon

Tue

Mon

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Inference

A

B C

D

E

F

G

Mon

Tue

Mon

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Inference

• We can look at the structure of this graph
• For example, C’s domain contains Monday and Tuesday making it not arc-

consistent with A and B

• Using that information by making C arc-consistent with A and B, we could 
remove Mon and Tue from C’s domain and just leave C with Wed …

A

B C

D

E

F

G

Mon

Tue

{Mon, Tue, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Inference

• Continuing to try and enforce arc consistency, there are some other 
conclusions we can draw
• B’s only option is Tue and C’s only option is Wed 
• if we want to make E arc-consistent, E can’t be Tue and Wed because that wouldn’t be 

arc-consistent with B and C…

A

B C

D

E

F

G

Mon

Tue

{Mon, Tue, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Wed}



Inference

A

B C

D

E

F

G

Mon

Tue

{Mon, Tue, Wed}

{Mon} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Wed}



Inference

A

B C

D

E

F

G

Mon

Tue

{Wed}

{Mon} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Wed}



Inference

A

B C

D

E

F

G

Mon

Tue

{Wed}

{Mon} {Mon, Tue, Wed}

{Tue}

{Wed}



Inference

A

B C

D

E

F

G

Mon

Tue

{Wed}

{Mon} {Wed}

{Tue}

{Wed}



Inference

• It turns out that without having to do any additional search and 
backtrack, just by enforcing arc consistency, we were able to figure out 
what the assignment of all the variables should be
• We interleave the search process and the inference step in trying to enforce arc 

consistency

A

B C

D

E

F

G

Mon

Tue

Wed

Mon Wed

Tue

Wed



Maintaining Arc-Consistency

• Algorithm for enforcing arc-consistency every time we make a new 
assignment

• When we make a new assignment to X, calls AC-3, starting with a 
queue of all arcs (Y,X) where Y is a neighbor of X

• Sometimes we can run the algorithm at very beginning before we 
even begin searching to limit the domain of the variables so 
making it easier to search



Maintaining Arc-Consistency

function BACKTRACK(assignment, csp):

if assignment complete: return assignment

var = SELECT-UNASSIGNED-VAR(assignment, csp)

for value in DOMAIN-VALUES(var, assignment):

if value consistent with assignment:

add {var = value} to assignment

inferences = INFERENCE(assignment, csp)

if inferences ≠ failure: add inferences to assignment

result = BACKTRACK(assignment, csp)

if result ≠ failure: return result

remove {var = value} and inferences from assignment

return failure



Heuristics

• There are other heuristics that can be used to try to improve the 
efficiency of the search process 
• it concerns some of the functions employed in the revised backtracking 

algorithm

• To begin with, let’s consider SELECT-UNASSIGNED-VAR 
• It selects some variable in the CSP that has not yet been assigned 
• So far, we have been selecting variables at random, but we can do better 

by using certain heuristics for choosing carefully which variable should be 
explored next



Using Heuristics Revisited

function BACKTRACK(assignment, csp):

if assignment complete: return assignment

var = SELECT-UNASSIGNED-VAR(assignment, csp)

for value in DOMAIN-VALUES(var, assignment):

if value consistent with assignment:

add {var = value} to assignment

inferences = INFERENCE(assignment, csp)

if inferences ≠ failure: add inferences to assignment

result = BACKTRACK(assignment, csp)

if result ≠ failure: return result

remove {var = value} and inferences from assignment

return failure



Select-Unassigned-Var

• Minimum remaining values (MRV) heuristic
• Select the variable that has the smallest domain
• The idea is if there are only two remaining values left, we can discard one 

of them very quickly to get to the other 
• one of those two has got to be the solution if a solution does exist

• Degree heuristic
• Select the variable that has the highest degree
• The idea is that by choosing a variable of high degree, one immediately 

constraints the rest of the variables more
• and it’s more likely to be able to eliminate large parts of the state-space that we don’t 

need to search trough



Minimum Remaining Values

A

B C

D

E

F

G

Mon

Tue

{Mon, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Wed}



Minimum Remaining Values

A

B C

D

E

F

G

Mon

Tue

{Mon, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Wed}



Degree Heuristic

A

B C

D

E

F

G

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Degree Heuristic

A

B C

D

E

F

G

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}



Domain-Values Revisited

• Domain-values takes a domain for a variable and returns a sequence of 
all the values inside that variable’s domain
• We used a naïve approach where we just go in order Mon, Tue, Wed

• But this order might not be the most efficient one to search in, it might 
be more efficient to choose values that are likely to be solutions first 
and then go to other values

• How do we assess whether a value is likely to lead to a solution?
• We can look at how many things get removed from domains by making this new 

assignment of a variable to a particular value



Domain-Values Revisited
function BACKTRACK(assignment, csp):

if assignment complete: return assignment

var = SELECT-UNASSIGNED-VAR(assignment, csp)

for value in DOMAIN-VALUES(var, assignment):
if value consistent with assignment:

add {var = value} to assignment

inferences = INFERENCE(assignment, csp)

if inferences ≠ failure: add inferences to assignment

result = BACKTRACK(assignment, csp)

if result ≠ failure: return result

remove {var = value} and inferences from assignment

return failure



Domain-Values

• Least-constraining value heuristic
• Returns variables in order by the number of choices that are ruled out for 

neighboring variables
• Try least-constraining values first

• The idea is that if one starts with a value that rules out a lot of other 
choices, we’re ruling out a lot of possibilities likely to lead to a solution



Least-constraining Value Heuristic

• Considering C, what should I 
choose first, Tue or Wed? A

B C

D

E

F

G

Mon

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed} Wed

{Mon, Tue}

{Tue, Wed}



Least-constraining Value Heuristic

A

B C

D

E

F

G

Mon

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed} Wed

{Mon, Tue}

Wed



Least-constraining Value Heuristic

• By continuing this process, we 
will find a solution
• an assignment of variables to 

values where each of these classes 
has an exam date with no conflict

A

B C

D

E

F

G

Mon

Tue

Wed

Mon Wed

Tue

Wed


