
Adversarial Search

prof. Antonino Staiano

M.Sc. In ’’Machine Learning e Big Data’’ - University Parthenope of Naples

LESSON 7

Artificial Intelligence

Adversarial Search

• The algorithms discussed so far need to find an answer to a
question

• In adversarial search, the algorithm faces an opponent that tries to
achieve the opposite goal

• Often, adversarial search is encountered in games

Types of Games

deterministic chance

perfect information

imperfect information

chess, checkers,
go, othello

Backgammon,
monopoly

battleships,
blind tictactoe

bridge, poker, scrabble

Perfect Information Zero-Sum Games

• The games most studied within AI (such as chess and Go) are
• deterministic, two-player turn-taking, perfect information, zero-sum games

• Perfect Perfect information
• Synonym for fully observable

• Zero-sum
• means that what is good for one player is just as bad for the other

• there is no “win-win” outcome

• Terminology
• Move -> action
• Position -> state

Tic-Tac-ToeInitial State

• Two players
• O
• X

X
O X

O
XO
X

Minimax

• A type of algorithm in adversarial search

• Minimax represents winning conditions as (-1) for one side and (+1)
for the other side

• Further actions will be driven by these conditions
• The minimizing side tries to get the lowest score
• The maximizing side tries to get the highest score

Minimax for Tic-Tac-Toe

O X X
O O
O X X

X O X
O O X
X X O

O X
X O

X O X

1-1 0
• Max(X) aims to maximize the score

• Min(O) aims to minimize the score

The Game

• S0: initial state

• PLAYER(s): returns which player (X or O) to move in state s

• ACTIONS(s): returns legal moves in state s
• What spots are free on the board

• RESULT(s,a): returns state after action a taken in state s
• The board that resulted from performing the action a on the state s

• TERMINAL(s): checks if state s is a terminal state
• If someone won or there is a tie

• Returns True if the game has ended, False otherwise

• UTILITY(s): final numerical value for terminal state s
• That is, -1, 0 or 1

Initial StateInitial State

PLAYER(s)PLAYER(s)

PLAYER() = X

XPLAYER() = O

ACTION(s)ACTIONS(s)

X O
O X X
X O

ACTIONS() = { , }
O

O

RESULTS(s,a)RESULT(s, a)

X O
O X X
X O

RESULT(,) =O
O X O
O X X
X O

TERMINAL(s)TERMINAL(s)

O
O X
X O X

TERMINAL() = false

O X
O X
X O X

TERMINAL() = true

UTILITY(s)UTILITY(s)

O X
O X
X O X

UTILITY() = 1

O X X
X O
O X O

UTILITY() = -1

What Action should O take?

• Player(s) = O

Initial State

X
OX

O
XO

X

PLAYER(s) = O

X O
O X X
X O

PLAYER(s) = O

O X O
O X X
X O

X O
O X X
X O O

MIN-VALUE:
0

O X O
O X X
X X O

X X O
O X X
X O O

VALUE:
0

VALUE:
1

MAX-VALUE:
1

MAX-VALUE:
0

Minimax Search Tree

PLAYER(s) = X

X O
O X X
X O

O X O
O X X
X O

X O
O X X
X O O

MIN-VALUE:
0

O X O
O X X
X X O

X X O
O X X
X O O

VALUE:
0

VALUE:
1

MAX-VALUE:
1

MAX-VALUE:
0

X O
O X
X O

X X O
O X
X O

X X O
O X O
X O

X X O
O X
X O O

MIN-VALUE:
-1

X X O
O X X
X O O

VALUE:
0

VALUE:
-1

MAX-VALUE:
0

X O
O X
X X O

VALUE:
1

MAX-VALUE:
1

Generalizing the Game Tree

• We can simplify the diagram into a more abstract Minimax tree
• each state is just representing some generic game that might be tic-tac-toe or

some other game
• Any of the green arrows that are pointing up, represents a maximizing state

• the score should be as big as possible

• Any of the red arrows pointing down are minimizing states, where the player is
the min player
• trying to make the score as small as possible

9

5 3 9

Generalizing the Game Tree

• Let’s consider the maximizing player
• He has three choices

• one choice gives a score of 5
• one choice gives a score of 3

• one choice gives a score of 9

• Between those three choices, his best option is to choose 9
• the score that maximizes his options out of all three options

9

5 3 9

Generalizing the Game Tree

• Now, one could also ask a reasonable question
• What might my opponent do two moves away from the end of the game?
• The opponent is the minimizing player

• He is trying to make the score as small as possible
• Imagine what would have happened if they had to pick which choice to make

9

5 3 9

9

5 3 9 2 8

8

8

How the Algorithm Works

• Recursively, the algorithm simulates all possible games that can
take place beginning at the current state and until a terminal state
is reached

• Each terminal state is valued as either -1, 0, or +1

Minimax in Tic-Tac-Toe

• Knowing the state whose turn it is, the algorithm can know whether the
current player, if playing optimally, will choose the action that leads to a state
with a lower or higher value

• In this way, the algorithm alternates between minimizing and maximizing,
generating values for the state that would result from each possible action

• This is a recursive process
• Eventually, through this recursive reasoning process, the maximizing player generates

values for each state that could result from all possible actions at the current state
• After having these values, the maximizing player chooses the highest one

• The maximizer considers the possible values of future states

Minimax

• Given a state s:

• MAX picks action a in ACTIONS(s) that produces highest value of MIN-VALUE(RESULT(s,a))

• MIN picks action a in ACTIONS(s) that produces smallest value of MAX-VALUE(RESULT(s,a))

• Everyone makes their decision based on trying to estimate what the other person
would do

Minimax Pseudocode

function MAX-VALUE(state):

if TERMINAL(state):
return UTILITY(state)

v=-inf

for action in ACTIONS(state):
v=MAX(v,MIN-VALUE(RESULT(state,action)))

return v

Minimax Pseudocode

function MIN-VALUE(state):

if TERMINAL(state):
return UTILITY(state)

v=+inf

for action in ACTIONS(state):
v=MIN(v,MAX-VALUE(RESULT(state,action)))

return v

Optimizations?

• The entire process could be a long process, especially as the
game starts to get more complex, as we start to add more moves
and more possible options

• What sort of optimizations can we make here?
• How can we do better in order to

• use less space
• take less time

What Minimax Does so far

4

5 2

2 64

3

9 73

4

4 58

Pruning Useless Sub-Trees

4

5 ≤2

2

≤3

9 3

4

4 58

Alpha-Beta Pruning

• A way to optimize Minimax, Alpha-Beta Pruning skips some of the recursive
computations that are decidedly unfavorable

• If, after establishing the value of an action, there are initial indications that
the following action may cause the opponent to achieve a better result than
the action already established, there is no need to investigate this action
further
• because it will be decidedly less favorable than the action previously established

𝛼 − 𝛽 Pruning Example

MAX

3 12 8

MIN 3

3

𝛼 − 𝛽 Pruning Example

MAX

3

MIN 3

12 8 2

2

X X

3

𝛼 − 𝛽 Pruning Example

MAX

3

MIN 3

12 8 2

2

X X
14

14

3

𝛼 − 𝛽 Pruning Example

MAX

3

MIN 3

12 8 2

2

X X
14 5

14 5

3

𝛼 − 𝛽 Pruning Example

MAX

3

MIN 3

12 8 2

2

X X
14 5 2

14 5 2

3 3

Why is it Called 𝛼 − 𝛽 ?

• 𝛼 is the best value (to max) found so far off the current path

• If V is worse than 𝛼, max will avoid it ⇒ prune that branch

• Define 𝛽 similarly for min

MIN

..

..

..

MAX

MAX

MIN V

Properties of 𝛼 − 𝛽

• Pruning does not affect the final result

• Good move ordering improves the effectiveness of pruning

• With “perfect ordering,” time complexity = O(bm/2)
• ⇒ doubles solvable depth

• A simple example of the value of reasoning about which computations are
relevant (a form of metareasoning)

• For chess (35100), unfortunately, 3550 is still impossible!

Total Possible Games

• 255.168 total possible Tic-Tac-Toe games

• More complex game
• 288.000.000.000 total possible chess games

• after four moves each

• 1029000 total possible chess games (lower bound)

• Big problem for Minimax

• So what?
• Do not look through all the states

• Depth-limited Minimax

Depth-Limited Minimax

• Depth-limited Minimax considers only a pre-defined number of moves before
it stops, without ever getting to a terminal state
• However, this doesn’t allow for getting a precise value for each action, since the end of

the hypothetical games has not been reached

• To deal with this problem, Depth-limited Minimax relies on an evaluation
function that estimates the expected utility of the game from a given state,
or, in other words, assigns values to states

Evaluation function

• Evaluation function
• Function that estimates the expected utility of the game from a given

state

• Example
• In a game like chess, if you imagine that a game value of 1 means white

wins, -1 means black wins, 0 means it’s a draw
• A score of 0.8 means white is very likely to win though certainly not guaranteed
• Depending on how good that evaluation function is, ultimately constrains how good

the AI is

Evaluation Functions

• For chess, typically linear weighted sum of features
• Eval(s) = w1f 1(s) + w2f 2(s) + . . .+ wnf n(s)

• For instance, w1= 9 with
• f1(s) = (number of white queens) – (number of black queens), etc.

Black to move

White slightly better

White to move

Blackwinning

Exact Values Don’t Matter

• Behavior is preserved under any monotonic transformation of Eval

• Only the order matters:
• payoff in deterministic games acts as an ordinal utility function

MAX

MIN 1 2 1 20

1 2 2 4 1 20 20 400

Assignment 1

• Using Minimax, implement an AI to play Tic-Tac-Toe optimally

