Artificial Intelligence

Adversarial Search

LESSON 7

Adversarial Search

- The algorithms discussed so far need to find an answer to a question
- In adversarial search, the algorithm faces an opponent that tries to achieve the opposite goal
- Often, adversarial search is encountered in games

Types of Games

deterministic chance
perfect information
imperfect information

chess, checkers, go, othello	Backgammon, monopoly
battleships, blind tictactoe	bridge, poker, scrabble

Perfect Information Zero-Sum Games

- The games most studied within Al (such as chess and Go) are
- deterministic, two-player turn-taking, perfect information, zero-sum games
- Perfect Perfect information
- Synonym for fully observable
- Zero-sum
- means that what is good for one player is just as bad for the other
- there is no "win-win" outcome
- Terminology
- Move -> action
- Position -> state

$$
\begin{aligned}
& \text { Tic-Tac-Toe } \\
& \text {-Two players } \\
& \begin{array}{l|l}
\hline & O X \\
\hline 0 X X X \\
\hline 0 & X
\end{array}
\end{aligned}
$$

Minimax

- A type of algorithm in adversarial search
- Minimax represents winning conditions as (-1) for one side and (+1) for the other side
- Further actions will be driven by these conditions
- The minimizing side tries to get the lowest score
- The maximizing side tries to get the highest score

Minimax for Tic-Tac-Toe

- $\operatorname{Max}(X)$ aims to maximize the score
- Min(O) aims to minimize the score

The Game

- S_{0} : initial state
- PLAYER(s): returns which player (X or O) to move in state s
- ACTIONS(s): returns legal moves in state s
- What spots are free on the board
- RESULT($s, a)$: returns state after action a taken in state s
- The board that resulted from performing the action a on the state s
- TERMINAL(s): checks if state s is a terminal state
- If someone won or there is a tie
- Returns True if the game has ended, False otherwise
- UTILITY(s): final numerical value for terminal state s
- That is, $-1,0$ or 1

Initial State

PLAYER(s)

ACTION(s)

RESULTS(s,a)

TERMINAL(s)

UTILITY(s)

$$
\begin{aligned}
& \operatorname{UTILITY}\left(\begin{array}{l|l|l}
\mathrm{o} & \mathrm{x} \\
\hline \mathrm{o} & \mathrm{x} & \\
\hline \mathrm{x} & \mathrm{o} & \mathrm{x}
\end{array}\right)=1 \\
& \\
& \text { UTILITY(} \left.\begin{array}{l|l|l}
\mathrm{o} & \mathrm{x} & \mathrm{x} \\
\hline \mathrm{x} & \mathrm{O} & \\
\hline
\end{array}\right)=-1
\end{aligned}
$$

What Action should O take?

- $\operatorname{Player}(\mathrm{s})=\mathrm{O}$

PLAYER(s) = 0

Minimax Search Tree

Generalizing the Game Tree

- We can simplify the diagram into a more abstract Minimax tree
- each state is just representing some generic game that might be tic-tac-toe or some other game
- Any of the green arrows that are pointing up, represents a maximizing state
- the score should be as big as possible
- Any of the red arrows pointing down are minimizing states, where the player is the min player
- trying to make the score as small as possible

Generalizing the Game Tree

- Let's consider the maximizing player
- He has three choices
- one choice gives a score of 5
- one choice gives a score of 3
- one choice gives a score of 9
- Between those three choices, his best option is to choose 9
- the score that maximizes his options out of all three options

Generalizing the Game Tree

- Now, one could also ask a reasonable question
- What might my opponent do two moves away from the end of the game?
- The opponent is the minimizing player
- He is trying to make the score as small as possible
- Imagine what would have happened if they had to pick which choice to make

How the Algorithm Works

- Recursively, the algorithm simulates all possible games that can take place beginning at the current state and until a terminal state is reached
- Each terminal state is valued as either $-1,0$, or +1

Minimax in Tic-Tac-Toe

- Knowing the state whose turn it is, the algorithm can know whether the current player, if playing optimally, will choose the action that leads to a state with a lower or higher value
- In this way, the algorithm alternates between minimizing and maximizing, generating values for the state that would result from each possible action
- This is a recursive process
- Eventually, through this recursive reasoning process, the maximizing player generates values for each state that could result from all possible actions at the current state
- After having these values, the maximizing player chooses the highest one
- The maximizer considers the possible values of future states

Minimax

- Given a state s:
- MAX picks action a in ACTIONS(s) that produces highest value of MIN-VALUE(RESULT(s,a))
- MIN picks action a in ACTIONS(s) that produces smallest value of MAX-VALUE(RESULT(s,a))
- Everyone makes their decision based on trying to estimate what the other person would do

Minimax Pseudocode

```
function MAX-VALUE(state):
    if TERMINAL(state):
    return UTILITY(state)
    v=-inf
    for action in ACTIONS(state):
    v=MAX(v,MIN-VALUE (RESULT(state, action)))
    return v
```


Minimax Pseudocode

```
function MIN-VALUE(state):
    if TERMINAL(state):
    return UTILITY(state)
    v=+inf
    for action in ACTIONS(state):
    v=MIN(v,MAX-VALUE (RESULT(state, action)))
    return v
```


Optimizations?

- The entire process could be a long process, especially as the game starts to get more complex, as we start to add more moves and more possible options
-What sort of optimizations can we make here?
- How can we do better in order to
- use less space
- take less time

What Minimax Does so far

Pruning Useless Sub-Trees

Alpha-Beta Pruning

- A way to optimize Minimax, Alpha-Beta Pruning skips some of the recursive computations that are decidedly unfavorable
- If, after establishing the value of an action, there are initial indications that the following action may cause the opponent to achieve a better result than the action already established, there is no need to investigate this action further
- because it will be decidedly less favorable than the action previously established

$\alpha-\beta$ Pruning Example

Why is it Called $\alpha-\beta$?

- α is the best value (to max) found so far off the current path
- If V is worse than α, max will avoid it \Rightarrow prune that branch
- Define β similarly for min

Properties of $\alpha-\beta$

- Pruning does not affect the final result
- Good move ordering improves the effectiveness of pruning
- With "perfect ordering," time complexity $=O\left(b^{m / 2}\right)$
- \Rightarrow doubles solvable depth
- A simple example of the value of reasoning about which computations are relevant (a form of metareasoning)
- For chess (35^{100}), unfortunately, 35^{50} is still impossible!

Total Possible Games

- 255.168 total possible Tic-Tac-Toe games
- More complex game
- 288.000.000.000 total possible chess games
- after four moves each
- 10^{29000} total possible chess games (lower bound)
- Big problem for Minimax
- So what?
- Do not look through all the states
- Depth-limited Minimax

Depth-Limited Minimax

- Depth-limited Minimax considers only a pre-defined number of moves before it stops, without ever getting to a terminal state
- However, this doesn't allow for getting a precise value for each action, since the end of the hypothetical games has not been reached
- To deal with this problem, Depth-limited Minimax relies on an evaluation function that estimates the expected utility of the game from a given state, or, in other words, assigns values to states

Evaluation function

- Evaluation function
- Function that estimates the expected utility of the game from a given state
- Example
- In a game like chess, if you imagine that a game value of 1 means white wins, -1 means black wins, 0 means it's a draw
- A score of 0.8 means white is very likely to win though certainly not guaranteed
- Depending on how good that evaluation function is, ultimately constrains how good the Al is

Evaluation Functions

- For chess, typically linear weighted sum of features
- E val $(s)=w f_{1}(s)+w_{2} f_{2}(s)+\ldots+w_{n} f_{n}(s)$
- For instance, $w_{1}=9$ with
- $f_{1}(s)=$ (number of white queens) - (number of black queens), etc.

Exact Values Don't Matter

- Behavior is preserved under any monotonic transformation of Eval
- Only the order matters:
- payoff in deterministic games acts as an ordinal utility function

Assignment 1

- Using Minimax, implement an AI to play Tic-Tac-Toe optimally pygame window
Game Over: O wins.

Play Again

