
Search in Complex Environments

prof. Antonino Staiano

M.Sc. In ’’Machine Learning e Big Data’’ - University Parthenope of Naples

LESSON 6

Artificial Intelligence

Informed Search

• Uniformed and informed search concern with finding a solution as a sequence
of actions
• The environments are fully observable, deterministic, static, and known

• Now, we want to relax some of those constraints
• Finding a good state without considering the path to get there

• Discrete and continuous states

• Local Search and Optimization Problems
• Hill-climbing
• Simulated annealing
• Genetic algorithms

• Local search in continuous spaces

Lecture outline

Optimization Problems

• In search problems examined so far, the agent needed to find a
path from a source to a destination
• A path from Arad to Bucharest

• In many optimization problems, the path is irrelevant
• The goal state itself is the solution
• We care only about finding a valid final configuration

• 8-queens

• Integrated-circuits design

• Job shop scheduling
• Telecommunications network optimization

• Crop planning

Local Search and Optimization Problems

• The state space is a set of “complete” configurations

• find the optimal configuration, e.g., TSP

• find configuration satisfying constraints, e.g., timetable

• In such cases, one can use iterative improvement algorithms

• keep a single “current” state and try to improve it

• Local search algorithms operate by searching from a start state to
neighboring states, without keeping track of the paths, nor the set of
states that have been reached

• They are not systematic; they might never explore a portion of the
search space where a solution actually resides

Example: TSP

• Start with any complete tour, perform pairwise exchange

• Variants of this approach get within 1% of optimal very quickly with
thousands of cities

Example: n-Queens

• Put n-queens on a nxn board, with no queen on the same row,
column or diagonal

• Move a queen to reduce the number of conflicts

h = 5 h = 2 h = 0

Local Search and Optimization Problems

• Local search algorithms solve optimization problems
• Find the best state according to an objective function

• Let’s consider a state-space landscape

current
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder

Hill-climbing Search

• It keeps track of one current state and on each iteration moves to the neighboring
state with the highest value
• It heads in the direction that provides the steepest ascent

• Stops at a peak with no neighbor with a higher value

• Does not look ahead beyond the immediate neighbors of the current state

Hill-climbing Search and 8-Queens

• The initial state is chosen at random

• The successors of a state are all possible states generated by moving one queen to
another square in the same column (56 successors)

• The heuristic cost function h is the number of pairs of queens that are attacking each
other
• Zero only for solutions

• Count as an attack if two pieces in the same line, with an intervening piece between them

Properties of Hill-climbing

• Sometimes called greedy local search

• Hill-climbing can get stuck for several reasons
• Local maxima

• A peak higher than each of its neighbors but lower than the global maximum

• Ridges
• A sequence of local maxima that is difficult for greedy algorithms to navigate

• Plateau
• Flat area of the state-space landscape

• Local maximum from which no uphill exists

• Shoulder from which progress is possible

• In each case, the algorithm reaches a point at which no progress is
being made

Simulated Annealing

• Hill-climbing is always vulnerable to getting stuck in a local
maximum
• At the other extreme, a pure random walk will eventually reach the global

maximum
• However, extremely inefficient

• Simulated annealing combines both worlds for yielding both
efficiency and completeness
• Annealing is the process to harden metals and glass by heating them to a

high temperature
• Then, gradually cooling the material allows it to reach a low-energy crystalline state

Simulated Annealing

• To understand simulated annealing let’s view the problem as a gradient
descent (that is, minimizing the cost)

Simulated Annealing Algorithm

• Pick a random move
• If the move leads to an improvement, accept it
• Otherwise, the move is accepted with some probability p < 1

• The probability decreases exponentially according to the badness of a move

Idea: escape local maxima by allowing some “bad” moves but gradually decrease their size and frequency

The probability decreases exponentially with the amount
∆E by which the evaluation is worsened.
The probability also decreases as the “temperature” T
goes down: “bad” moves are more likely to be allowed
at the start when T is high, and they become more
unlikely as T decreases.

Properties of Simulated Annealing

• At fixed temperature T, state occupation probability reaches Boltzmann
distribution

𝑝 𝑥 = 𝑎𝑒
!(#)
%&

• T decreased slowly enough ⟹ always reach the best state 𝑥* because

𝑒
!(#∗)
&' / 𝑒

!(#)
&' = 𝑒

! #∗ (!(#)
&' -> 1 for small T

Local Beam Search

• The local beam search algorithm keeps track of k states rather than just one
• Randomly generates k states
• At each step, all the successors of all k are generated

• If anyone is a goal, stop
• Otherwise, select the k best successors from the complete list and repeat

• A local beam search with k states might seem as running parallel k random
restarts instead of in sequence
• However, in a random-restart search, each search process runs independently of the

others, whereas, in a local beam search, useful information is passed among the parallel
search threads

• The algorithm quickly leaves unfruitful searches and moves its resources to where the
most progress is being made

• A variant called stochastic beam search chooses successors with probability
proportional to the successor’s value to increase diversity

Evolutionary Algorithms

• Motivated by the metaphor of natural selection in biology
• It is created a population of individuals (the state, that is, the solutions)
• The fittest individuals (highest value) produce offspring (successor states)

• This process is called recombination
• The offspring after recombination form the next generation population

• Several variants of this evolutionary scheme exist
• Genetic algorithms
• Evolutionary strategy
• Genetic programming

Genetic Algorithms (GAs)

• The population has a fixed size (number of individuals)

• Each individual, called a chromosome, is represented by a string
over a finite alphabet (usually, a binary string)

• Each chromosome has a fitness value determining its goodness

• The population evolves through several generations
• In each generation, the chromosomes are applied to three genetic

operators
• Selection
• Crossover
• Mutation

GA Operators: Selection

• Selects the chromosomes who will become parents of the next
generation
• The individuals are chosen with a probability proportional to their fitness

value
• This basic scheme is called roulette-wheel selection

GA Operators: Crossover

• Crossover is the operator for recombination
• Once selected a pair of parents, it is randomly selected a crossover point

where each parent string is split
• The split substrings of one parent are recombined with the ones of the

other parent to recombine and form the children (that, is the chromosome
of the next generation)
• one with the first part of parent 1 and the second part of parent 2
• the other with the second part of parent 1 and the first part of parent 2

GA Operators: Mutation

• Mutation randomly changes a symbol in the chromosome
representation with a given probability
• Once the offspring are generated, every bit in its representation is flipped

with probability equal to a mutation rate

• Eventually, the next generation is formed
• It could be just the newly formed offspring or
• A few top-scoring parents from the previous generation are hold

• Elitism
• Guarantees that the overall fitness will never decrease over time

The Genetic Algorithm
• A GA with chromosomes representing 8-queens states

• The initial population is ranked by a fitness function

• The parents are then chosen for reproduction

• The offspring are generated

• Mutation possibly arises

32252124

Selection Cross−Over Mutation

24748552

32752411

24415124

24

23

20

32543213 11

29%

31%

26%

14%

24113275

24748552

11327524

24415124

48552327

24112475

12432752

11244154

24752411

32748152

24415417

Fitness Pairs
Each state is rated by the fitness
function: Higher fitness values are better,
so we use the number of nonattacking
pairs of queens, which has a value of
8×7/2 = 28 for a solution

How Gas Works

• Schema
• a substring in which some of the positions can be left unspecified

• the schema 246***** describes all 8-queens states in which the first three queens are
in positions 2, 4, and 6, respectively

• Strings that match the schema (such as 24613578) are called instances of the schema

• It can be shown that if the average fitness of the instances of a schema is
above the mean, then the number of instances of the schema will grow
over time

GA Implementation

Local Search in Continuous Spaces

• When the environment is continuous the branching factor is infinite, so the algorithms
described so far are unsuitable

• Suppose we want to site three airports in Romania:
• 6-D state space defined by (x1, y2), (x2, y2), (x3, y3)

• objective function f (x1, y2, x2, y2, x3, y3) = sum of squared distances from each city to the nearest airport

• This equation is correct for the state x and states in the local neighborhood of x

• However, it is not correct globally; if we stray too far from x then the set of closest cities for that airport changes,
and we need to recompute the nearest airports

• Discretization methods turn continuous space into discrete space, e.g., empirical gradient
considers ±𝛿 change in each coordinate

• Gradient methods compute

to increase/reduce f by

∇f = , , , , ,
∂f ∂f ∂f ∂f ∂f ∂f

∂x ∂y1 ∂x2 ∂y2 ∂x3 ∂y1 3

x ← x + α∇f (x)

Sometimes can solve for ∇f (x) = 0 exactly (e.g., with one city). Newton–
Raphson (1664, 1690) iterates x ← x − H−f1(x)∇f (x) to solve ∇f (x) = 0, where
H i j =∂2f /∂xi∂xj

