UNIVERSITA DEGLI STUDI DI NAPOLI

PARTHENOPE

Artificial Intelligence

Search

LESSON 3

prof. Antonino Staiano

M.Sc. In “"Machine Learning e Big Data” - University Parthenope of Naples




What a Search Problem is

* Search problems involve an agent that
* is given an initial state and a goal state
* returns a solution of how to get from the former to the latter

* Example

* A navigator app uses a typical , Wwhere the agent (the thinking part
of the program) receives your current location and desired destination as input
and returns a based on a search algorithm

* However, many other search problems exist, like puzzles or mazes




Designing Agents for Search Problems

 Consider the following problems, and assume that your goal is to design a rational
agent (assume a computer program) capable of autonomously solving them

e |Let's recall

« A rational agent is a system that acts rationally, according to a well-defined objective
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Missionaries and Cannibals

* A classical Al toy-problem
* 3 missionaries and 3 cannibals on one side of a river
* Goal: cross the river on a boat (or raft) to reach the other side of the river

 Constraints
* The boat can only hold two people
* Do not leave more cannibals than missionaries on either side of the river

* How can all six get across the river safely?




Game playing: 15-puzzle

* An array of tiles numbered from 1 to 15 and an empty cell

* Goal:
* Transform the tiles from an initial configuration into a given desired
configuration, by a of a tile into an adjacent empty cell

* A more challenging goal
* Find the shortest of such sequences

* Example
1311011 6 1|1 2] 3] 4
5 (7| 4| 8 516 |78
1 14| 9 9 [ 10| 11 | 12
3 115 2 |12 13| 14 | 15
initial configuration desired configuration



checkers and chess

Game playing

* Two historical problems addressed by many researchers since the

early days of Al
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Robot navigation

* A real-world problem addressed since the '60s

* A robot (left) and a problem to solve (right)
 Find a route from R to G, possibly the shortest one, avoiding the black obstacles




Route finding in maps

* Example
* Finding a route (more challenging, the shortest one) from Arad to

Bucharest using the information shown on the map
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Searching problems

* The previous problems may seem very different from each other,
nonetheless, they share some common characteristics allowing one to
solve them using the same approach

* Main characteristic

* A clear goal can be defined in terms of desired world states

* Having the goal, the task is to search for a sequence of actions leading
to a goal state

* |t requires suitably defining the actions and the states to be considered

* The solution to a problem is a sequence of actions that lead to a goal
state

* The process of looking for a solution is called search



Problem ingredients

* Agent

* Entity that perceives its environment and acts upon that environment

* State
* A configuration of the agent and its environment
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e Initial state
* The state from which the search algorithm starts




Problem ingredients

 Actions
* Choices that can be made in a state

» Actions can be defined as a function

o ACTIONS(s) returns the set of actions that can be executed in a state s




Problem ingredients

e Transition model

* A description of what state results from performing any applicable action in any
state

* Defined as a function
« RESULTS(s,a) returns the state resulting from performing action a in state s

14 6 10
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Problem ingredients

* State space

* The set of all states reachable from the initial state by any sequence of actions

* Ina 15 puzzle, the state space consists of all the 161/2 configurations on the board that can be reached
from any initial state

* The state space can be visualized as a directed graph with states, represented as nodes, and actions
represented as arrows between nodes
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Problem ingredients

* Goal test
« Way to determine whether a given state is a goal state

* Path cost
* Numerical cost associated with a given path




Example: 15-puzzle

e goal:
* getting to the desired tile configuration (possibly, by the shortest sequence of
moves)
* states:
* each possible 16!/2 tile configurations
* actions:
* moving the n-th tile (n = 1,...,15) to one of the adjacent cells (two, three or four),
if empty
1311011 | 6 1 2 3 4
5 7| 4 | 8 5 6 | 7 | 8
1 141 9 9 |10 | 11 | 12
3 |15 2 | 12 13 | 14 | 15
initial configuration desired configuration



Example: Route finding on maps

e goal:
* getting from a given city to a destination (possibly, through the shortest route)

* states:
* Being in each possible city

] Oradea

* actions:
* Moving between two adjacent cities

Eforie




Example: Chess

* Goal:

* To checkmate (possible in many chessboard configurations)

* States:
» Each possible chessboard configuration

* Actions:
* All legal moves




Properties of Search Problems

Static vs dynamic

* does the environment change over time? Examples: 15-puzzle and chess are static; robot
navigation is dynamic if the position of obstacles changes over time

Fully vs partially observable:

* is the current state completely known? Examples: 15-puzzle and chess are fully observable; robot
navigation is partially observable if sensors are not “perfect”

Discrete vs continuous sets of states and actions

« Examples: 15-puzzle and chess are discrete, robot navigation is continuous

Deterministic vs non-deterministic

* is the outcome (the resulting state) of any sequence of actions certain. i.e., known in advance?
Examples: 15-puzzle is deterministic, chess is not (due to the opponent’s move, which is unknown

when deciding one’s own)



Real-world Search Problems

* Many challenging real-world problems can be formulated as
search problems
* Traveling salesperson problem

 Finding the shortest tour that allows one to visit every city on a given map exactly
once

* Route-finding
* In computer networks airline travel planning, etc.

* VLS| design

* Cell layout, channel routing




Solving Search Problems

* Solution
A sequence of actions that leads from the initial state to a goal state

* Optimal solution
* A solution that has the lowest path cost among all solutions




Data structures

* In a search process, data is often stored in a node
* Node

* a data structure that keeps track of

* A state

* Its parent node, through which the current node was generated

* The action that was applied to the state of the parent to get to the current node
* The path cost from the initial state to this node

* Frontier
* A mechanism that manages the nodes, that is, the set of nodes to be explored

* The frontier starts by containing an initial state and an empty set of explored
items



Approach

» Start with a frontier that contains the initial state

* Repeat:
* If the frontier is empty, then stop, there is no solution
* Remove a node from the frontier
* If node contains the goal state, return the solution and stop

* Else expand node, add resulting nodes to the frontier




Example: Find a path from A to E

» Start with a frontier that contains the initial state

* Repeat:

* |f the frontier is empty, then no solution

* Remove a node from the frontier
* |f node contains goal state, return the solution
* Expand node, add resulting nodes to the frontier



Example: Find a path from A to E

e Start with a frontier that contains the initial state

* Repeat:

* |f the frontier is empty, then no solution

* Remove a node from the frontier
* |f node contains goal state, return the solution
* Expand node, add resulting nodes to the frontier

Frontier

A



Example: Find a path from A to E

» Start with a frontier that contains the initial state

* Repeat:
* |f the frontier is empty, then no solution
« Remove a node from the frontier

* |f node contains goal state, return the solution
* Expand node, add resulting nodes to the frontier



Example: Find a path from A to E

» Start with a frontier that contains the initial state

* Repeat:
* |f the frontier is empty, then no solution
 Remove a node from the frontier

* |f node contains goal state, return the solution
« Expand node, add resulting nodes to the frontier

Frontier

=



Example: Find a path from A to E

» Start with a frontier that contains the initial state

* Repeat:
* |f the frontier is empty, then no solution
« Remove a node from the frontier

* |f node contains goal state, return the solution
* Expand node, add resulting nodes to the frontier



Example: Find a path from A to E

» Start with a frontier that contains the initial state

* Repeat:
* |f the frontier is empty, then no solution
 Remove a node from the frontier

* |f node contains goal state, return the solution
« Expand node, add resulting nodes to the frontier

Frontier

C D



Example: Find a path from A to E

» Start with a frontier that contains the initial state

* Repeat:
* |f the frontier is empty, then no solution
« Remove a node from the frontier

* |f node contains goal state, return the solution
* Expand node, add resulting nodes to the frontier



Example: Find a path from A to E

» Start with a frontier that contains the initial state

* Repeat:
* |f the frontier is empty, then no solution
 Remove a node from the frontier

* |f node contains goal state, return the solution
« Expand node, add resulting nodes to the frontier

Frontier

= D



Example: Find a path from A to E

» Start with a frontier that contains the initial state

* Repeat:
* |f the frontier is empty, then no solution
« Remove a node from the frontier

* |f node contains goal state, return the solution
* Expand node, add resulting nodes to the frontier



Example: Find a path from A to E

» Start with a frontier that contains the initial state

* Repeat:
* |f the frontier is empty, then no solution
 Remove a node from the frontier

* |f node contains goal state, return the solution
* Expand node, add resulting nodes to the frontier



Any problem here?

* Find a path from Ato E




Any problem here?

* Find a path from Ato E

Frontier
A




Any problem here?

* Find a path from Ato E




Any problem here?

* Find a path from Ato E

Frontier
B




Any problem here?

* Find a path from Ato E




Any problem here?

* Find a path from Ato E

Frontier

A C D




Any problem here?

* Find a path from Ato E

Frontier

C D




A Cleaver Approach

e Start with a frontier that contains the initial state
e Start with an empty explored set

* Repeat:
* |f the frontier is empty, then no solution
* Remove a node from the frontier
* If a node contains goal state, return solution
* Add the node to the explored set

* Expand node, add resulting nodes to the frontier if they aren't already in
the frontier or the explored set



Which node should be removed from the frontier?

* The choice of the nodes to be removed impacts the quality of the
solution and how fast it is achieved

* There are multiple ways to choose, two of which can be
represented by the data structures of
« stack (in depth-first search) and
* queue (in breadth-first search)




Depth-First Search

* A depth-first search algorithm exhausts every single direction before
trying another direction

* In these cases, the frontier is managed as a stack data structure
* last-in first-out mode

« After nodes are added to the frontier, the first node to be removed and
considered is the last node added

* This results in a search algorithm that goes as deep as possible in the
first direction that gets in its way while leaving all other directions for
later



Example: Find a path from A to E
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Depth-First Search

* Pros
* At best, this algorithm is the fastest

* If it “lucks out” and always chooses the right path to the solution (by chance), then a
DFS takes the least possible time to get to a solution

* Cons
* It is possible that the found solution is not optimal

* At worst, this algorithm will explore every possible path before finding the
solution, thus taking the longest possible time before reaching the
solution




Depth-First Search Code Example

# Define the function that removes a node from the frontier and returns it.
def remove(self):

# Terminate the search if the frontier is empty, because this means that there is no solution.
if self.empty():
raise Exception("empty frontier")
else:

# Save the last item in the list (which is the newest node added)
node = self.frontier[-1]

# Save all the items on the list besides the last node (i.e. removing the last node)
self.frontier = self.frontier[:-1]

return node




Breadth-First Search

* The opposite of DFS

* A BFS algorithm will follow multiple directions at the same time, taking
one step in each possible direction before taking the second step in
each direction

* In this case, the frontier is managed as a queue data structure
* first-in first-out mode
* All the new nodes add up in line, and nodes are being considered
based on which one was added first (first come first served!)

* This results in a search algorithm that takes one step in each possible
direction before taking a second step in any one direction
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BFS

* Pros
* This algorithm is guaranteed to find the optimal solution.

e Cons

* This algorithm is almost guaranteed to take longer than the minimal time
to run

* At worst, this algorithm takes the longest possible time to run




Breadth-First Search Code Example

# Define the function that removes a node from the frontier and returns it.
def remove(self):

# Terminate the search if the frontier is empty, because this means that there is no solution.
if self.empty():

raise Exception("empty frontier")
else:

# Save the oldest item on the list (which was the first one to be added)
node = self.frontier([0]

# Save all the items on the list besides the first one (i.e. removing the first node)
self.frontier = self.frontier([1:]
return node




