UNIVERSITA DEGLI STUDI DI NAPOLI

PARTHENOPE

Artificial Intelligence

Search

LESSON 3

prof. Antonino Staiano

M.Sc. In “"Machine Learning e Big Data” - University Parthenope of Naples




What a Search Problem is

* Search problems involve an agent that
* is given an initial state and a goal state
* returns a solution of how to get from the former to the latter

* Example

* A navigator app uses a typical , Wwhere the agent (the thinking part
of the program) receives your current location and desired destination as input
and returns a based on a search algorithm

* However, many other search problems exist, like puzzles or mazes




Designing Agents for Search Problems

 Consider the following problems, and assume that your goal is to design a rational
agent (assume a computer program) capable of autonomously solving them

e |Let's recall

« A rational agent is a system that acts rationally, according to a well-defined objective

I

5 6 7 8

9 10 11 12

13 14 15




Missionaries and Cannibals

* A classical Al toy-problem
* 3 missionaries and 3 cannibals on one side of a river
* Goal: cross the river on a boat (or raft) to reach the other side of the river

 Constraints
* The boat can only hold two people
* Do not leave more cannibals than missionaries on either side of the river

* How can all six get across the river safely?




Game playing: 15-puzzle

* An array of tiles numbered from 1 to 15 and an empty cell

* Goal:
* Transform the tiles from an initial configuration into a given desired
configuration, by a of a tile into an adjacent empty cell

* A more challenging goal
* Find the shortest of such sequences

* Example
1311011 6 1|1 2] 3] 4
5 (7| 4| 8 516 |78
1 14| 9 9 [ 10| 11 | 12
3 115 2 |12 13| 14 | 15
initial configuration desired configuration



checkers and chess

Game playing

* Two historical problems addressed by many researchers since the

early days of Al

7

CEm
Z §Y

e

2

ol 1| [Tl
ol -




Robot navigation

* A real-world problem addressed since the '60s

* A robot (left) and a problem to solve (right)
 Find a route from R to G, possibly the shortest one, avoiding the black obstacles




Route finding in maps

* Example
* Finding a route (more challenging, the shortest one) from Arad to

Bucharest using the information shown on the map

Oradea

Fagaras

Vaslui

Rimnicu Vilcea

Timisoara
142

Pitesti

Lugoj

Hirsova

85
Urziceni

90

Giurgiu

Mehadia

75
Drobeta

120
Eforie

Craiova




Searching problems

* The previous problems may seem very different from each other,
nonetheless, they share some common characteristics allowing one to
solve them using the same approach

* Main characteristic

* A clear goal can be defined in terms of desired world states

* Having the goal, the task is to search for a sequence of actions leading
to a goal state

* |t requires suitably defining the actions and the states to be considered

* The solution to a problem is a sequence of actions that lead to a goal
state

* The process of looking for a solution is called search



Problem ingredients

* Agent

* Entity that perceives its environment and acts upon that environment

* State
* A configuration of the agent and its environment

12 9 4 2

8 7 3 14

14 6 10

1 6 11

9 13 15 12

5 13 10 15

e Initial state
* The state from which the search algorithm starts




Problem ingredients

 Actions
* Choices that can be made in a state

» Actions can be defined as a function

o ACTIONS(s) returns the set of actions that can be executed in a state s




Problem ingredients

e Transition model

* A description of what state results from performing any applicable action in any
state

* Defined as a function
« RESULTS(s,a) returns the state resulting from performing action a in state s

14 6 10

9 13 15 12




Problem ingredients

* State space

* The set of all states reachable from the initial state by any sequence of actions

* Ina 15 puzzle, the state space consists of all the 161/2 configurations on the board that can be reached
from any initial state

* The state space can be visualized as a directed graph with states, represented as nodes, and actions
represented as arrows between nodes

2 4 5 7

8 3 1 11

14 6 10
/9131512\

2 4 5 7 2 4 5 7 2 4 5 7 2 4 5 7
8 3 1 11 8 3 1 11 8 3 1 11 8 3 1
14 6 10 12 14 6 12 14 6 10 14 6 10 11

© 13 15 9 13 10 15 9 13 15 12 9 13 15 12




Problem ingredients

* Goal test
« Way to determine whether a given state is a goal state

* Path cost
* Numerical cost associated with a given path




Example: 15-puzzle

e goal:
* getting to the desired tile configuration (possibly, by the shortest sequence of
moves)
* states:
* each possible 16!/2 tile configurations
* actions:
* moving the n-th tile (n = 1,...,15) to one of the adjacent cells (two, three or four),
if empty
1311011 | 6 1 2 3 4
5 7| 4 | 8 5 6 | 7 | 8
1 141 9 9 |10 | 11 | 12
3 |15 2 | 12 13 | 14 | 15
initial configuration desired configuration



Example: Route finding on maps

e goal:
* getting from a given city to a destination (possibly, through the shortest route)

* states:
* Being in each possible city

] Oradea

* actions:
* Moving between two adjacent cities

Eforie




Example: Chess

* Goal:

* To checkmate (possible in many chessboard configurations)

* States:
» Each possible chessboard configuration

* Actions:
* All legal moves




Properties of Search Problems

Static vs dynamic

* does the environment change over time? Examples: 15-puzzle and chess are static; robot
navigation is dynamic if the position of obstacles changes over time

Fully vs partially observable:

* is the current state completely known? Examples: 15-puzzle and chess are fully observable; robot
navigation is partially observable if sensors are not “perfect”

Discrete vs continuous sets of states and actions

« Examples: 15-puzzle and chess are discrete, robot navigation is continuous

Deterministic vs non-deterministic

* is the outcome (the resulting state) of any sequence of actions certain. i.e., known in advance?
Examples: 15-puzzle is deterministic, chess is not (due to the opponent’s move, which is unknown

when deciding one’s own)



Real-world Search Problems

* Many challenging real-world problems can be formulated as
search problems
* Traveling salesperson problem

 Finding the shortest tour that allows one to visit every city on a given map exactly
once

* Route-finding
* In computer networks airline travel planning, etc.

* VLS| design

* Cell layout, channel routing




Solving Search Problems

* Solution
A sequence of actions that leads from the initial state to a goal state

* Optimal solution
* A solution that has the lowest path cost among all solutions




Data structures

* In a search process, data is often stored in a node
* Node

* a data structure that keeps track of

* A state

* Its parent node, through which the current node was generated

* The action that was applied to the state of the parent to get to the current node
* The path cost from the initial state to this node

* Frontier
* A mechanism that manages the nodes, that is, the set of nodes to be explored

* The frontier starts by containing an initial state and an empty set of explored
items



Approach

» Start with a frontier that contains the initial state

* Repeat:
* If the frontier is empty, then stop, there is no solution
* Remove a node from the frontier
* If node contains the goal state, return the solution and stop

* Else expand node, add resulting nodes to the frontier




Example: Find a path from A to E

» Start with a frontier that contains the initial state

* Repeat:

* |f the frontier is empty, then no solution

* Remove a node from the frontier
* |f node contains goal state, return the solution
* Expand node, add resulting nodes to the frontier



Example: Find a path from A to E

e Start with a frontier that contains the initial state

* Repeat:

* |f the frontier is empty, then no solution

* Remove a node from the frontier
* |f node contains goal state, return the solution
* Expand node, add resulting nodes to the frontier

Frontier

A



Example: Find a path from A to E

» Start with a frontier that contains the initial state

* Repeat:
* |f the frontier is empty, then no solution
« Remove a node from the frontier

* |f node contains goal state, return the solution
* Expand node, add resulting nodes to the frontier



Example: Find a path from A to E

» Start with a frontier that contains the initial state

* Repeat:
* |f the frontier is empty, then no solution
 Remove a node from the frontier

* |f node contains goal state, return the solution
« Expand node, add resulting nodes to the frontier

Frontier

=



Example: Find a path from A to E

» Start with a frontier that contains the initial state

* Repeat:
* |f the frontier is empty, then no solution
« Remove a node from the frontier

* |f node contains goal state, return the solution
* Expand node, add resulting nodes to the frontier



Example: Find a path from A to E

» Start with a frontier that contains the initial state

* Repeat:
* |f the frontier is empty, then no solution
 Remove a node from the frontier

* |f node contains goal state, return the solution
« Expand node, add resulting nodes to the frontier

Frontier

C D



Example: Find a path from A to E

» Start with a frontier that contains the initial state

* Repeat:
* |f the frontier is empty, then no solution
« Remove a node from the frontier

* |f node contains goal state, return the solution
* Expand node, add resulting nodes to the frontier



Example: Find a path from A to E

» Start with a frontier that contains the initial state

* Repeat:
* |f the frontier is empty, then no solution
 Remove a node from the frontier

* |f node contains goal state, return the solution
« Expand node, add resulting nodes to the frontier

Frontier

= D



Example: Find a path from A to E

» Start with a frontier that contains the initial state

* Repeat:
* |f the frontier is empty, then no solution
« Remove a node from the frontier

* |f node contains goal state, return the solution
* Expand node, add resulting nodes to the frontier



Example: Find a path from A to E

» Start with a frontier that contains the initial state

* Repeat:
* |f the frontier is empty, then no solution
 Remove a node from the frontier

* |f node contains goal state, return the solution
* Expand node, add resulting nodes to the frontier



Any problem here?

* Find a path from Ato E




Any problem here?

* Find a path from Ato E

Frontier
A




Any problem here?

* Find a path from Ato E




Any problem here?

* Find a path from Ato E

Frontier
B




Any problem here?

* Find a path from Ato E




Any problem here?

* Find a path from Ato E

Frontier

A C D




Any problem here?

* Find a path from Ato E

Frontier

C D




A Cleaver Approach

e Start with a frontier that contains the initial state
e Start with an empty explored set

* Repeat:
* |f the frontier is empty, then no solution
* Remove a node from the frontier
* If a node contains goal state, return solution
* Add the node to the explored set

* Expand node, add resulting nodes to the frontier if they aren't already in
the frontier or the explored set



Which node should be removed from the frontier?

* The choice of the nodes to be removed impacts the quality of the
solution and how fast it is achieved

* There are multiple ways to choose, two of which can be
represented by the data structures of
« stack (in depth-first search) and
* queue (in breadth-first search)




Depth-First Search

* A depth-first search algorithm exhausts every single direction before
trying another direction

* In these cases, the frontier is managed as a stack data structure
* last-in first-out mode

« After nodes are added to the frontier, the first node to be removed and
considered is the last node added

* This results in a search algorithm that goes as deep as possible in the
first direction that gets in its way while leaving all other directions for
later



Example: Find a path from A to E




Example: Find a path from A to E

Frontier
A
Explored Set




Example: Find a path from A to E




Example: Find a path from A to E




Example: Find a path from A to E




Example: Find a path from A to E

Frontier
C D

Explored Set

A =




Example: Find a path from A to E

Frontier
C

Explored Set

A B B)




Example: Find a path from A to E

Frontier
C =

Explored Set

A B B)




Example: Find a path from A to E

Frontier
C

Explored Set
A B D F




Example: Find a path from A to E

Explored Set

A B D F C




Example: Find a path from A to E

Frontier
E

Explored Set

A B D F C




Example: Find a path from A to E

Explored Set
A B D F C




Depth-First Search

* Pros
* At best, this algorithm is the fastest

* If it “lucks out” and always chooses the right path to the solution (by chance), then a
DFS takes the least possible time to get to a solution

* Cons
* It is possible that the found solution is not optimal

* At worst, this algorithm will explore every possible path before finding the
solution, thus taking the longest possible time before reaching the
solution




Depth-First Search Code Example

# Define the function that removes a node from the frontier and returns it.
def remove(self):

# Terminate the search if the frontier is empty, because this means that there is no solution.
if self.empty():
raise Exception("empty frontier")
else:

# Save the last item in the list (which is the newest node added)
node = self.frontier[-1]

# Save all the items on the list besides the last node (i.e. removing the last node)
self.frontier = self.frontier[:-1]

return node




Breadth-First Search

* The opposite of DFS

* A BFS algorithm will follow multiple directions at the same time, taking
one step in each possible direction before taking the second step in
each direction

* In this case, the frontier is managed as a queue data structure
* first-in first-out mode
* All the new nodes add up in line, and nodes are being considered
based on which one was added first (first come first served!)

* This results in a search algorithm that takes one step in each possible
direction before taking a second step in any one direction



Example: Find a path from A to E




Example: Find a path from A to E

Frontier
A

Explored Set




Example: Find a path from A to E




Example: Find a path from A to E




Example: Find a path from A to E




Example: Find a path from A to E

Frontier
C D

Explored Set

A =




Example: Find a path from A to E




Example: Find a path from A to E

Explored Set

A B C




Example: Find a path from A to E

Explored Set

A B C B)




Example: Find a path from A to E

Explored Set

A B C B)




Example: Find a path from A to E

Explored Set

A B C B)




BFS

* Pros
* This algorithm is guaranteed to find the optimal solution.

e Cons

* This algorithm is almost guaranteed to take longer than the minimal time
to run

* At worst, this algorithm takes the longest possible time to run




Breadth-First Search Code Example

# Define the function that removes a node from the frontier and returns it.
def remove(self):

# Terminate the search if the frontier is empty, because this means that there is no solution.
if self.empty():

raise Exception("empty frontier")
else:

# Save the oldest item on the list (which was the first one to be added)
node = self.frontier([0]

# Save all the items on the list besides the first one (i.e. removing the first node)
self.frontier = self.frontier([1:]
return node




