
Search

prof. Antonino Staiano

M.Sc. In ’’Machine Learning e Big Data’’ - University Parthenope of Naples

LESSON 3

Artificial Intelligence

What a Search Problem is

• Search problems involve an agent that
• is given an initial state and a goal state
• returns a solution of how to get from the former to the latter

• Example
• A navigator app uses a typical search process, where the agent (the thinking part

of the program) receives your current location and desired destination as input
and returns a suggested path based on a search algorithm

• However, many other search problems exist, like puzzles or mazes

Designing Agents for Search Problems

• Consider the following problems, and assume that your goal is to design a rational
agent (assume a computer program) capable of autonomously solving them

• Let’s recall
• A rational agent is a system that acts rationally, according to a well-defined objective

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Missionaries and Cannibals

• A classical AI toy-problem
• 3 missionaries and 3 cannibals on one side of a river
• Goal: cross the river on a boat (or raft) to reach the other side of the river
• Constraints

• The boat can only hold two people
• Do not leave more cannibals than missionaries on either side of the river

• How can all six get across the river safely?

Game playing: 15-puzzle

• An array of tiles numbered from 1 to 15 and an empty cell

• Goal:
• Transform the tiles from an initial configuration into a given desired

configuration, by a sequence of moves of a tile into an adjacent empty cell

• A more challenging goal
• Find the shortest of such sequences

• Example

6

Game playing: 15-puzzle

Another classic AI’s toy-problem: transform an array of tiles from
an initial configuration into a given, desired configuration, by a
sequence of moves of a tile into an adjacent empty cell.
A more challenging goal: find the shortest of such sequences.

An example:

13 10 11 6
5 7 4 8
1 14 9
3 15 2 12

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

initial configuration desired configuration

Game playing: checkers and chess

• Two historical problems addressed by many researchers since the
early days of AI

7

Game playing: checkers and chess

Two historical problems addressed by many researchers since the
early days of AI. Chess has been named the “Drosophila of AI”.

Robot navigation
• A real-world problem addressed since the ‘60s

• A robot (left) and a problem to solve (right)
• Find a route from R to G, possibly the shortest one, avoiding the black obstacles

8

Robot navigation

A real-world problem addressed since mid–1960s.

Left: Shakey the robot (1968). Right: a navigation problem for Shakey:
finding a route from R to G, possibly the shortest one, avoiding
obstacles (in black).

Route finding in maps

• Example
• Finding a route (more challenging, the shortest one) from Arad to

Bucharest using the information shown on the map

Searching problems

• The previous problems may seem very different from each other,
nonetheless, they share some common characteristics allowing one to
solve them using the same approach

• Main characteristic
• A clear goal can be defined in terms of desired world states

• Having the goal, the task is to search for a sequence of actions leading
to a goal state

• It requires suitably defining the actions and the states to be considered

• The solution to a problem is a sequence of actions that lead to a goal
state
• The process of looking for a solution is called search

Problem ingredients

• Agent
• Entity that perceives its environment and acts upon that environment

• State
• A configuration of the agent and its environment

• Initial state
• The state from which the search algorithm starts

5 742

1 1138

12

10614

15139

4 2912

3 1478

10

1161

15135

10 3415

11 12113

14 759

286

5 742

1 1138

12

10614

15139

4 2912

3 1478

10

1161

15135

10 3415

11 12113

14 759

286

5 742

1 1138

12

10614

15139

4 2912

3 1478

10

1161

15135

10 3415

11 12113

14 759

286

Problem ingredients

• Actions
• Choices that can be made in a state

• Actions can be defined as a function
• ACTIONS(s) returns the set of actions that can be executed in a state s

actions
1 2

3
4

Problem ingredients

• Transition model
• A description of what state results from performing any applicable action in any

state

• Defined as a function
• RESULTS(s,a) returns the state resulting from performing action a in state s

RESULT(,) =

5 742

1 1138

1210614

15139

5 742

1 1138

1210614

15139

RESULT(,) =

5 742

1 1138

1210614

15139

5 742

1 1138

12

10614

15139

Problem ingredients

• State space
• The set of all states reachable from the initial state by any sequence of actions

• In a 15 puzzle, the state space consists of all the 16!/2 configurations on the board that can be reached
from any initial state

• The state space can be visualized as a directed graph with states, represented as nodes, and actions
represented as arrows between nodes

2 4 5 7

8 3 1 11

14 6 10 12

9 13 152 4 5 7

8 3 1 11

14 6 10 12

9 13 15

2 4 5 7

8 3 1 11

14 6 10

129 13 15

2 4 5 7

8 3 1 11

14 6

10

12

9 13 15

2 4 5 7

8 3 1 11

14 6 10 12

9 13 15

2 4 5 7

8 3 1 11

14 6 10

129 13 15

2 4 5 7

8 3 1

1114 6 10

129 13 15

Problem ingredients

• Goal test
• Way to determine whether a given state is a goal state

• Path cost
• Numerical cost associated with a given path

C D

H

M

I

E

J

K

A
B

F G

L

2

1

3 2

2
1

4

2

34

3

5
6

24

C D

H

M

I

E

J

K

A
B

F G

L

1

1

1 1

1
1

1

1

11

1

1
1

11

Example: 15-puzzle

• goal:
• getting to the desired tile configuration (possibly, by the shortest sequence of

moves)

• states:
• each possible 16!/2 tile configurations

• actions:
• moving the n-th tile (n = 1,...,15) to one of the adjacent cells (two, three or four),

if empty

12

Goal and problem formulation: examples

15-puzzle

13 10 11 6
5 7 4 8
1 14 9
3 15 2 12

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

initial configuration desired configuration

I goal: getting to the desired tile configuration (possibly, by the
shortest sequence of moves)

I states: each possible 16! tile configurations
I actions: moving the n-th tile (n = 1, . . . , 15) to one of the

adjacent cells (two, thee or four), if empty

Example: Route finding on maps

• goal:
• getting from a given city to a destination (possibly, through the shortest route)

• states:
• Being in each possible city

• actions:
• Moving between two adjacent cities

Example: Traveling in Romania

� State space:
� Cities

� Successor function:
� Roads: Go to adjacent city with

cost = distance

� Start state:
� Arad

� Goal test:
� Is state == Bucharest?

� Solution?

Example: Chess

• Goal:
• To checkmate (possible in many chessboard configurations)

• States:
• Each possible chessboard configuration

• Actions:
• All legal moves

14

Goal and problem formulation: examples

Chess

I goal: to checkmate (this goal is achieved in many possible
chessboard configurations)

I states: each possible chessboard configuration
I actions: all legal moves

Properties of Search Problems

• Static vs dynamic
• does the environment change over time? Examples: 15-puzzle and chess are static; robot

navigation is dynamic if the position of obstacles changes over time

• Fully vs partially observable:
• is the current state completely known? Examples: 15-puzzle and chess are fully observable; robot

navigation is partially observable if sensors are not “perfect”

• Discrete vs continuous sets of states and actions
• Examples: 15-puzzle and chess are discrete, robot navigation is continuous

• Deterministic vs non-deterministic
• is the outcome (the resulting state) of any sequence of actions certain. i.e., known in advance?

Examples: 15-puzzle is deterministic, chess is not (due to the opponent’s move, which is unknown
when deciding one’s own)

Real-world Search Problems

• Many challenging real-world problems can be formulated as
search problems
• Traveling salesperson problem

• Finding the shortest tour that allows one to visit every city on a given map exactly
once

• Route-finding
• In computer networks airline travel planning, etc.

• VLSI design
• Cell layout, channel routing

Solving Search Problems

• Solution
• A sequence of actions that leads from the initial state to a goal state

• Optimal solution
• A solution that has the lowest path cost among all solutions

Data structures

• In a search process, data is often stored in a node

• Node
• a data structure that keeps track of

• A state
• Its parent node, through which the current node was generated
• The action that was applied to the state of the parent to get to the current node
• The path cost from the initial state to this node

• Frontier
• A mechanism that manages the nodes, that is, the set of nodes to be explored
• The frontier starts by containing an initial state and an empty set of explored

items

Approach

• Start with a frontier that contains the initial state

• Repeat:
• If the frontier is empty, then stop, there is no solution
• Remove a node from the frontier
• If node contains the goal state, return the solution and stop

• Else expand node, add resulting nodes to the frontier

Example: Find a path from A to E

• Start with a frontier that contains the initial state

• Repeat:
• If the frontier is empty, then no solution
• Remove a node from the frontier
• If node contains goal state, return the solution
• Expand node, add resulting nodes to the frontier

E

A
B

C D

F

Frontier

Find a path from A to E.

• Start with a frontier that contains the initial state.

• Repeat:

• If the frontier is empty, then no solution.

• Remove a node from the frontier.

• If node contains goal state, return the solution.

• Expand node, add resulting nodes to the frontier.

A

E

A
B

C D

F

Frontier

Find a path from A to E.

• Start with a frontier that contains the initial state.

• Repeat:

• If the frontier is empty, then no solution.

• Remove a node from the frontier.

• If node contains goal state, return the solution.

• Expand node, add resulting nodes to the frontier.

A

Example: Find a path from A to E

• Start with a frontier that contains the initial state

• Repeat:
• If the frontier is empty, then no solution
• Remove a node from the frontier
• If node contains goal state, return the solution
• Expand node, add resulting nodes to the frontier

E

A
B

C D

F

Frontier

Find a path from A to E.

• Start with a frontier that contains the initial state.

• Repeat:

• If the frontier is empty, then no solution.

• Remove a node from the frontier.

• If node contains goal state, return the solution.

• Expand node, add resulting nodes to the frontier.

A

E

A
B

C D

F

Frontier

Find a path from A to E.

• Start with a frontier that contains the initial state.

• Repeat:

• If the frontier is empty, then no solution.

• Remove a node from the frontier.

• If node contains goal state, return the solution.

• Expand node, add resulting nodes to the frontier.

A

Example: Find a path from A to E

• Start with a frontier that contains the initial state

• Repeat:
• If the frontier is empty, then no solution
• Remove a node from the frontier
• If node contains goal state, return the solution
• Expand node, add resulting nodes to the frontier

E

A
B

C D

F

Frontier

Find a path from A to E.

• Start with a frontier that contains the initial state.

• Repeat:

• If the frontier is empty, then no solution.

• Remove a node from the frontier.

• If node contains goal state, return the solution.

• Expand node, add resulting nodes to the frontier.

A

E

A
B

C D

F

Frontier

Find a path from A to E.

• Start with a frontier that contains the initial state.

• Repeat:

• If the frontier is empty, then no solution.

• Remove a node from the frontier.

• If node contains goal state, return the solution.

• Expand node, add resulting nodes to the frontier.

B

Example: Find a path from A to E

• Start with a frontier that contains the initial state

• Repeat:
• If the frontier is empty, then no solution
• Remove a node from the frontier
• If node contains goal state, return the solution
• Expand node, add resulting nodes to the frontier

E

A
B

C D

F

Frontier

Find a path from A to E.

• Start with a frontier that contains the initial state.

• Repeat:

• If the frontier is empty, then no solution.

• Remove a node from the frontier.

• If node contains goal state, return the solution.

• Expand node, add resulting nodes to the frontier.

B

E

A
B

C D

F

Frontier

Find a path from A to E.

• Start with a frontier that contains the initial state.

• Repeat:

• If the frontier is empty, then no solution.

• Remove a node from the frontier.

• If node contains goal state, return the solution.

• Expand node, add resulting nodes to the frontier.

B

Example: Find a path from A to E

• Start with a frontier that contains the initial state

• Repeat:
• If the frontier is empty, then no solution
• Remove a node from the frontier
• If node contains goal state, return the solution
• Expand node, add resulting nodes to the frontier

E

A
B

C D

F

Frontier

Find a path from A to E.

• Start with a frontier that contains the initial state.

• Repeat:

• If the frontier is empty, then no solution.

• Remove a node from the frontier.

• If node contains goal state, return the solution.

• Expand node, add resulting nodes to the frontier.

A

E

A
B

C D

F

Frontier

Find a path from A to E.

• Start with a frontier that contains the initial state.

• Repeat:

• If the frontier is empty, then no solution.

• Remove a node from the frontier.

• If node contains goal state, return the solution.

• Expand node, add resulting nodes to the frontier.

C D

Example: Find a path from A to E

• Start with a frontier that contains the initial state

• Repeat:
• If the frontier is empty, then no solution
• Remove a node from the frontier
• If node contains goal state, return the solution
• Expand node, add resulting nodes to the frontier

E

A
B

C D

F

Frontier

Find a path from A to E.

• Start with a frontier that contains the initial state.

• Repeat:

• If the frontier is empty, then no solution.

• Remove a node from the frontier.

• If node contains goal state, return the solution.

• Expand node, add resulting nodes to the frontier.

C D

E

A
B

C D

F

Frontier

Find a path from A to E.

• Start with a frontier that contains the initial state.

• Repeat:

• If the frontier is empty, then no solution.

• Remove a node from the frontier.

• If node contains goal state, return the solution.

• Expand node, add resulting nodes to the frontier.

C D

Example: Find a path from A to E

• Start with a frontier that contains the initial state

• Repeat:
• If the frontier is empty, then no solution
• Remove a node from the frontier
• If node contains goal state, return the solution
• Expand node, add resulting nodes to the frontier

E

A
B

C D

F

Frontier

Find a path from A to E.

• Start with a frontier that contains the initial state.

• Repeat:

• If the frontier is empty, then no solution.

• Remove a node from the frontier.

• If node contains goal state, return the solution.

• Expand node, add resulting nodes to the frontier.

D

E

E

A
B

C D

F

Frontier

Find a path from A to E.

• Start with a frontier that contains the initial state.

• Repeat:

• If the frontier is empty, then no solution.

• Remove a node from the frontier.

• If node contains goal state, return the solution.

• Expand node, add resulting nodes to the frontier.

D

E

Example: Find a path from A to E

• Start with a frontier that contains the initial state

• Repeat:
• If the frontier is empty, then no solution
• Remove a node from the frontier
• If node contains goal state, return the solution
• Expand node, add resulting nodes to the frontier

E

A
B

C D

F

Frontier

Find a path from A to E.

• Start with a frontier that contains the initial state.

• Repeat:

• If the frontier is empty, then no solution.

• Remove a node from the frontier.

• If node contains goal state, return the solution.

• Expand node, add resulting nodes to the frontier.

D

E

E

A
B

C D

F

Frontier

Find a path from A to E.

• Start with a frontier that contains the initial state.

• Repeat:

• If the frontier is empty, then no solution.

• Remove a node from the frontier.

• If node contains goal state, return the solution.

• Expand node, add resulting nodes to the frontier.

DE

Example: Find a path from A to E

• Start with a frontier that contains the initial state

• Repeat:
• If the frontier is empty, then no solution
• Remove a node from the frontier
• If node contains goal state, return the solution
• Expand node, add resulting nodes to the frontier

E

A
B

C D

F

Frontier

Find a path from A to E.

• Start with a frontier that contains the initial state.

• Repeat:

• If the frontier is empty, then no solution.

• Remove a node from the frontier.

• If node contains goal state, return the solution.

• Expand node, add resulting nodes to the frontier.

D

E

E

A
B

C D

F

Frontier

Find a path from A to E.

• Start with a frontier that contains the initial state.

• Repeat:

• If the frontier is empty, then no solution.

• Remove a node from the frontier.

• If node contains goal state, return the solution.

• Expand node, add resulting nodes to the frontier.

D

Example: Find a path from A to E

• Start with a frontier that contains the initial state

• Repeat:
• If the frontier is empty, then no solution
• Remove a node from the frontier
• If node contains goal state, return the solution
• Expand node, add resulting nodes to the frontier

E

A
B

C D

F

Frontier

Find a path from A to E.

• Start with a frontier that contains the initial state.

• Repeat:

• If the frontier is empty, then no solution.

• Remove a node from the frontier.

• If node contains goal state, return the solution.

• Expand node, add resulting nodes to the frontier.

D

E

E

A
B

C D

F

Frontier

Find a path from A to E.

• Start with a frontier that contains the initial state.

• Repeat:

• If the frontier is empty, then no solution.

• Remove a node from the frontier.

• If node contains goal state, return the solution.

• Expand node, add resulting nodes to the frontier.

D

Any problem here?

• Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E. A

E

A
B

C D

F

Frontier

Find a path from A to E. A

Any problem here?

• Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E. A

E

A
B

C D

F

Frontier

Find a path from A to E.

A

Any problem here?

• Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E. A

E

A
B

C D

F

Frontier

Find a path from A to E.

B

Any problem here?

• Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E.

B

E

A
B

C D

F

Frontier

Find a path from A to E.

B

Any problem here?

• Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E. A

E

A
B

C D

F

Frontier

Find a path from A to E. A

C D

Any problem here?

• Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E. A

C D

E

A
B

C D

F

Frontier

Find a path from A to E.

A C D

Any problem here?

• Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E.

B

E

A
B

C D

F

Frontier

Find a path from A to E.

C D

A Cleaver Approach

• Start with a frontier that contains the initial state

• Start with an empty explored set

• Repeat:
• If the frontier is empty, then no solution
• Remove a node from the frontier
• If a node contains goal state, return solution
• Add the node to the explored set
• Expand node, add resulting nodes to the frontier if they aren’t already in

the frontier or the explored set

Which node should be removed from the frontier?

• The choice of the nodes to be removed impacts the quality of the
solution and how fast it is achieved

• There are multiple ways to choose, two of which can be
represented by the data structures of
• stack (in depth-first search) and
• queue (in breadth-first search)

Depth-First Search

• A depth-first search algorithm exhausts every single direction before
trying another direction

• In these cases, the frontier is managed as a stack data structure
• last-in first-out mode

• After nodes are added to the frontier, the first node to be removed and
considered is the last node added

• This results in a search algorithm that goes as deep as possible in the
first direction that gets in its way while leaving all other directions for
later

Example: Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E. A

Explored Set

E

A
B

C D

F

Frontier

Find a path from A to E.

A

Explored Set

E

A
B

C D

F

Frontier

Find a path from A to E.

A

Explored Set

Example: Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E.

A

Explored Set

E

A
B

C D

F

Frontier

Find a path from A to E.

A

Explored Set

E

A
B

C D

F

Frontier

Find a path from A to E.

A

Explored Set

Example: Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E. A

Explored Set

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

B

A

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

B

A

Example: Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

B

A

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

B

A

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

B

A

Example: Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E. A

Explored Set

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

C D

BA
E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

C D

BA

Example: Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

C D

BA
E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

C D

BA

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

C D

BA

Example: Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

C

F

BA D

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

C

F

BA D
E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

C

F

BA D

Example: Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

C

F

BA D
E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

C

F

BA D

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

C F

BA D

Example: Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

C

BA D F

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

C

BA D F
E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

C

BA D F

Example: Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E. A

Explored Set

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

E

BA D F C

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

E

BA D F C

Example: Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

E

BA D F C

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

E

BA D F C

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

E

BA D F C

Example: Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E. A

Explored Set

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

E

BA D F C
E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

BA D F C

Depth-First Search

• Pros
• At best, this algorithm is the fastest

• If it “lucks out” and always chooses the right path to the solution (by chance), then a
DFS takes the least possible time to get to a solution

• Cons
• It is possible that the found solution is not optimal
• At worst, this algorithm will explore every possible path before finding the

solution, thus taking the longest possible time before reaching the
solution

Depth-First Search Code Example

Breadth-First Search

• The opposite of DFS

• A BFS algorithm will follow multiple directions at the same time, taking
one step in each possible direction before taking the second step in
each direction

• In this case, the frontier is managed as a queue data structure
• first-in first-out mode

• All the new nodes add up in line, and nodes are being considered
based on which one was added first (first come first served!)

• This results in a search algorithm that takes one step in each possible
direction before taking a second step in any one direction

Example: Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E. A

Explored Set

E

A
B

C D

F

Frontier

Find a path from A to E.

A

Explored Set

E

A
B

C D

F

Frontier

Find a path from A to E.

A

Explored Set

Example: Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E.

A

Explored Set

E

A
B

C D

F

Frontier

Find a path from A to E.

A

Explored Set

E

A
B

C D

F

Frontier

Find a path from A to E.

A

Explored Set

Example: Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

A

B

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

A

B

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

B

A

Example: Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

B

A
E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

A

B

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

B

A

Example: Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

A

B

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

C D

BA

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

C D

BA

Example: Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

C D

BA

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

C D

BA

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

C D

BA

Example: Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

E

BA D F C

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

A B C

D

EE

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

A B C

D

E

Example: Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

E

BA D F C

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

A B C

D

EE

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

A B C

D E

Example: Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

A B C D

E

FE

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

A B C D

E

F
E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

C

F

BA D

Example: Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

A B C D

E

F
E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

C

F

BA D

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

A B C D

E F

Example: Find a path from A to E

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

A B C D

E

F

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

A B C D

F

E

A
B

C D

F

Frontier

Find a path from A to E.

Explored Set

BA D F C

BFS

• Pros
• This algorithm is guaranteed to find the optimal solution.

• Cons
• This algorithm is almost guaranteed to take longer than the minimal time

to run
• At worst, this algorithm takes the longest possible time to run

Breadth-First Search Code Example

