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Propositional Logic: Inference Rules



Inference: General concepts

• Two sentences 𝛼 and 𝛽 are logically equivalent (𝛼 ≡ 𝛽 ), if they are 
true under the same models, i.e., if and only if
• 𝛼 ⊨ 𝛽 and 𝛽 ⊨ 𝛼
• For instance (P ⋀ Q)≡(Q ⋀ P) 

• A sentence is valid if it is true in all models
• It is also called a tautology

• P ∨ ¬P

• A sentence is satisfiable if it is true only in some model
• P ⋀ Q



Inference: General concepts

• Two useful properties related to the above concepts
• Deduction theorem

• For any 𝛼 and 𝛽, 𝛼 ⊨ 𝛽 if and only if 𝛼 ⇒ 𝛽 is valid
• for instance, given a set KB of premises and a possible conclusion model-checking 

inference algorithm works by checking whether KB ⇒ 𝛼 is valid 

• satisfiability is related to the standard mathematical proof technique of reductio 
ad absurdum (proof by refutation or by contradiction): 

𝛼 ⊨ 𝛽 if and only if (𝛼 ∧ ¬ 𝛽) is unsatisfiable 



Inference Rules

• Practical inference algorithms are based on inference rules to avoid the 
exponential computational complexity of model checking

• An inference rule represents a standard pattern of inference: 
• it implements a simple reasoning step whose soundness can be easily proven 

and applied to a set of premises with a specific structure to derive a conclusion

• Inference rules are represented as follows: 
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Inference rules

To avoid the exponential computational complexity of model
checking, practical inference algorithms are based on inference
rules.

An inference rule represents a standard pattern of inference: it
implements a simple reasoning step whose soundness can be
easily proven, that can be applied to a set of premises having a
specific structure to derive a conclusion.

Inference rules are represented as follows:

premises
conclusion



Inference Rules

• Modus Ponens

If it is raining, then Harry is inside
It is raining

_________________________________

Harry is inside



Modus Ponens

α →  β

α

β

Modus Ponens



Inference Rules

• And Elimination

Harry is friends with Ron and Hermione

______________________

Harry is friends with Hermione



And Elimination

α ∧ β

α

And Elimination



Inference Rules

• Double Negation Elimination

It is not true that Harry did not pass the test

________________________

Harry passed the test



Double Negation Elimination

¬(¬α)

α

Double Negation Elimination



Inference Rules

• Implication Elimination

If it is raining, then Harry is inside

_______________________

It is not raining or Harry is inside



Implication Elimination

α →  β

¬α ∨ β

Implication Elimination



Inference Rules

• Biconditional elimination

It is raining if and only if Harry is inside

____________________

If it is raining, then Harry is inside, and if Harry is inside, then it is 
raining



Biconditional Elimination

α ↔  β

(α →  β) ∧ (β → α)

Biconditional Elimination



De Morgan’s Law

It is not true that both Harry and Ron passed the test

___________________

Harry did not pass the test or Ron did not pass the test



De Morgan’s Law

¬(α ∧ β)

¬α ∨ ¬β

De Morgan's Law



De Morgan’s Law

It is not true that Harry or Ron passed the test

___________________

Harry did not pass the test and Ron did not pass the test



De Morgan’s Law

¬(α ∨ β)

¬α ∧ ¬β

De Morgan's Law



Distributive Property

(α ∧ (β ∨ γ))

(α ∧ β) ∨  (α ∧ γ)

Distributive Property



Distributive Property

(α ∨ (β ∧ γ))

(α ∨ β) ∧ (α ∨ γ)

Distributive Property



Search Problems

• Initial state
• Actions
• Transition model
• Goal test
• Path cost function



Theorem Proving

• Initial state: starting knowledge base

• Actions: inference rules

• Transition model: new knowledge base after inference

• Goal test: check statement we’re trying to prove

• Path cost function: number of steps in proof



Proof by Resolution

• What about the completeness of our inference algorithm?
• If the search algorithm that uses the inference rule is complete and the 

rules are adequate the inference algorithm is complete
• However, if the inference rule is not adequate, for instance, the goal is 

unreachable
• Therefore, we turn on a single inference rule, the resolution, that yields a 

complete inference algorithm when coupled with any complete search 
algorithm



Resolution

(Ron is in the Great Hall) ∨ (Hermione is in the library)

Ron is not in the Great Hall

Hermione is in the library

• Resolution is based on another inference rule that let us prove anything that 
can be proven about a KB



Resolution: Unit Resolution Rule

P ∨ Q

¬P

Q



Resolution

P ∨ Q1 ∨ Q2 ∨ ...∨ Qn

¬P

Q1 ∨ Q2 ∨ ...∨ Qn



Resolution

(Ron is in the Great Hall) ∨ (Hermione is in the library)

(Ron is not in the Great Hall) ∨ (Harry is sleeping)

(Hermione is in the library) ∨ (Harry is sleeping)



Resolution

P ∨ Q

¬P ∨ R

Q ∨ R



Resolution

P ∨ Q1 ∨ Q2 ∨ ...∨ Qn

¬P ∨ R1 ∨ R2 ∨ ...∨ Rm

Q1 ∨ Q2 ∨ ...∨ Qn ∨ R1 ∨ R2 ∨ ...∨ Rm



Clause

• A disjunction of literals
• e.g. P ∨ Q ∨ R

• Disjunction means literals connected with or

• Conjunction means literals connected with and

• Literal is either a propositional symbol or the opposite of a 
propositional symbol

• Any logical sentence can be turned into a conjunctive normal form



Conjunctive Normal Form

• Logical sentence that is a conjunction of clauses

conjunctive normal form

logical sentence that is a conjunction of 
clauses 

e.g. (A ∨ B ∨ C) ∧ (D ∨ ¬E) ∧ (F ∨ G)



Conversion to CNFConversion to CNF

• Eliminate biconditionals 

• turn (α ↔  β) into (α →  β) ∧ (β → α) 

• Eliminate implications 

• turn (α →  β) into ¬α ∨ β 

• Move ¬ inwards using De Morgan's Laws 

• e.g. turn ¬(α ∧ β) into ¬α ∨ ¬β 

• Use distributive law to distribute ∨ wherever possible



Conversion to CNFConversion to CNF

(P ∨ Q) → R 

¬(P ∨ Q) ∨ R 

(¬P ∧ ¬Q) ∨ R 

(¬P ∨ R) ∧  (¬Q ∨ R)

eliminate implication

De Morgan's Law

distributive law

• Converting into a CNF is useful in order to apply the resolution
• Inference by resolution



Inference by Resolution

P ∨ Q

¬P ∨ R

(Q ∨ R)



Inference by Resolution

P ∨ Q ∨ S

¬P ∨ R ∨ S

(Q ∨ S ∨ R ∨ S)

Factoring -> eliminates all redundant variables



Inference by Resolution
P

¬P

( )

• The empty clause is always false
• This is the base of the inference by resolution algorithm

Empty clause



Inference by Resolution

• To determine if KB ⊨ 𝛼:
• Check if (KB ⋀ ¬𝛼 ) is a contradiction?

• If so, then KB ⊨ 𝛼
• Otherwise, no entailment

• In practice
• Convert if (KB ⋀ ¬𝛼 )  to Conjunctive Normal Form
• Keep checking to see if we can use the resolution to produce a new clause

• If ever we produce the empty clause (equivalent to False), we have a contradiction, 
and KB ⊨ 𝛼

• Otherwise, if we can’t add new clauses, no entailment



Inference by ResolutionInference by Resolution

Does (A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) entail A?

(A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) ∧ (¬A)

(A ∨ B)    (¬B ∨ C)    (¬C)    (¬A)



Inference by ResolutionInference by Resolution

Does (A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) entail A?

(A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) ∧ (¬A)

(A ∨ B)    (¬B ∨ C)    (¬C)    (¬A)



Inference by ResolutionInference by Resolution

Does (A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) entail A?

(A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) ∧ (¬A)

(¬B)(A ∨ B)    (¬B ∨ C)    (¬C)    (¬A)



Inference by ResolutionInference by Resolution
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Inference by Resolution
Inference by Resolution
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Inference by ResolutionInference by Resolution

Does (A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) entail A?

(A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) ∧ (¬A)

(¬B)(A ∨ B)    (¬B ∨ C)    (¬C)    (¬A) (A)



Inference by ResolutionInference by Resolution
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Inference by ResolutionInference by Resolution
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Inference by ResolutionInference by Resolution

Does (A ∨ B) ∧ (¬B ∨ C) ∧ (¬C) entail A?
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Limitations of propositional logic

• Main problems
• Limited expressive power

• Inferences involving the structure of atomic sentences (e.g., All men are mortal, …) 
cannot be made

• Lack of conciseness
• Even small KBs (in natural language) require many propositional symbols and 

sentences



From Propositional to Predicate Logic

• The description of many domains of interest for real-world applications (e.g., 
mathematics, philosophy, AI) involves the following elements in natural language: 
• nouns denoting objects (or persons), e.g.: Wumpus and pits; Socrates and Plato; the numbers one, 

two, etc. 

• predicates denoting properties of individual objects and relations between them, e.g.: Socrates is 
a man, five is prime, four is lower than five; the sum of two and two equals four 

• some relations between objects can be represented as functions, e.g.: “father of”, “two plus two” 
• facts involving some or all objects, e.g.: all squares neighboring the Wumpus are smelly; some

numbers are prime 

• These elements cannot be represented in propositional logic, and require the more 
expressive predicate logic
• The predicate logic version of the Resolution algorithm is used in automatic theorem provers, to 

assist mathematicians to develop complex proofs


