Corso di Laurea Triennale in

"SCIENZE BIOLOGICHE"

Anno Accademico 2022-2023

IGIENE

Sistema Immunitario

Prof.ssa Valeria Di Onofrio

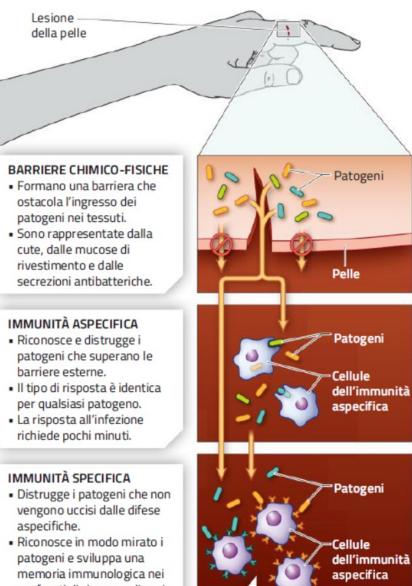
valeria.dionofrio@uniparthenope.it

Scuola Interdipartimentale delle Scienze, dell'Ingegneria e della Salute

DIPARTIMENTO DI SCIENZE E TECNOLOGIE (DIST)

meccanismi di difesa dalle infezioni

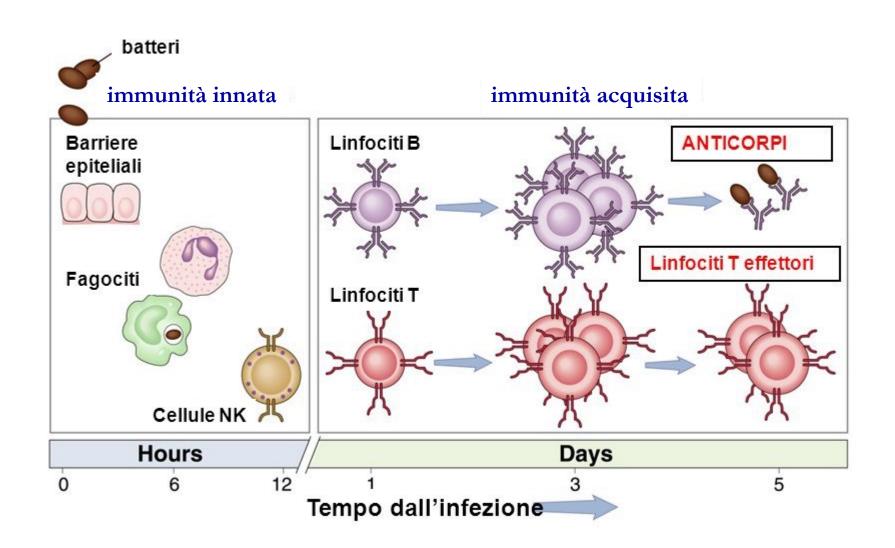
l'immunità o resistenza è la capacità di utilizzare le proprie difese fisiche per contrastare danni o malattie


tale capacità dipende dal sistema immunitario

il sistema immunitario ha lo scopo di:

- Individuare ed eliminare le sostanze estranee, potenzialmente dannose, con cui il nostro organismo viene a contatto
- prevenire la loro diffusione

COSTITUZIONE DEL SISTEMA IMMUNITARIO


- La difesa da organismi patogeni avviene mediante due tipi di risposte:
 - Immunità innata o congenita
 - Immunità specifica
- ♣I due tipi di risposte sono interdipendenti e collaborano in modo cooperativo all'eliminazione degli agenti patogeni

LE TRE LINEE DI **DIFESA CONTRO I PATOGENI**

- confronti di ciascuno di essi.
- La risposta all'infezione richiede da alcune ore ad alcuni giorni.

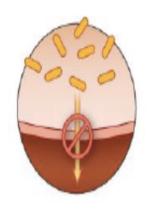
Dopo aver sviluppato una «memoria» del patogeno, l'immunità specifica risponde molto più rapidamente a eventuali altri attacchi; in molti casi la protezione dura per tutta la vita.

Fonte: Abbas, Lichtman & Pober. Cellular and Molecular Immunology. WB Saunders 1999

IMMUNITÀ INNATA

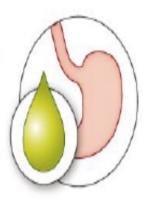
- Chiamata anche immunità naturale
- ♣È la prima risposta dell'organismo
- Consiste in meccanismi preesistenti all'infezione capaci di reagire con rapidità, ma in maniera aspecifica e ripetitiva contro i patogeni
- ♣È la forma più antica di difesa, già presente negli invertebrati

COMPONENTI DELL'IMMUNITÀ NATURALE


I componenti principali dell'immunità naturale sono:

- Le barriere fisiche costituite dagli epiteli
- Le barriere chimiche costituite da sostanze battericide
- Le cellule a funzioni fagocitiche: Neutrofili e macrofagi
- Le cellule citotossiche: Natural Killer
- ♣ Proteine del sangue quali il complemento
- ♣ Citochine ed altre sostanze che hanno la funzione di attivare e coordinare le cellule dell'immunità naturale, ma anche di quella specifica

L'APPARATO TEGUMENTARIO È LA PRIMA DIFESA CONTRO L'ATTACCO DEI PATOGENI


PELLE

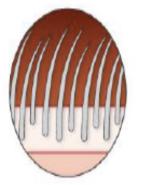
Forma una barriera quasi impenetrabile che ostacola l'ingresso di patogeni nell'organismo.

SECREZIONI ACIDE

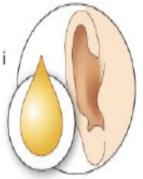
I succhi gastrici, le secrezioni vaginali e l'urina proteggono rispettivamente il canale digerente, le vie genitali femminili e le vie urinarie dai patogeni.

LACRIME

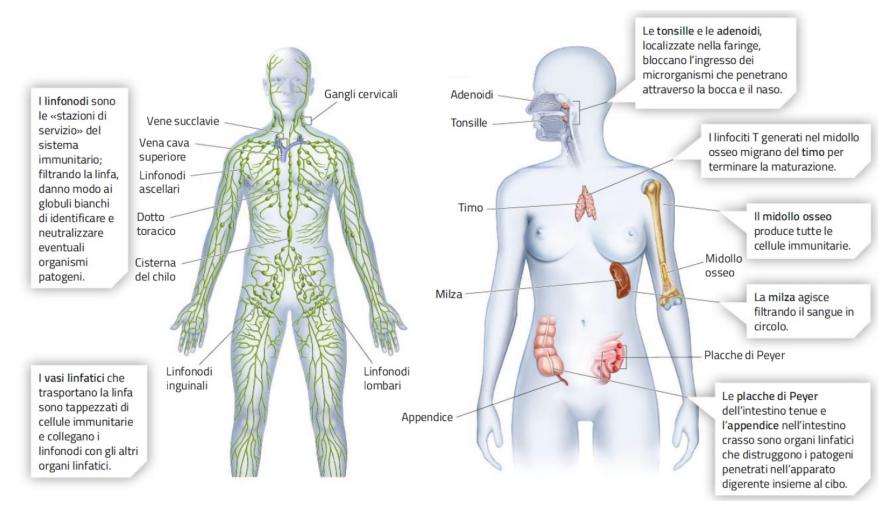
Le lacrime contengono sostanze chimiche antivirali e antibatteriche che eliminano i patogeni dalla zona degli occhi.


LISOZIMA E ALTRI ENZIMI

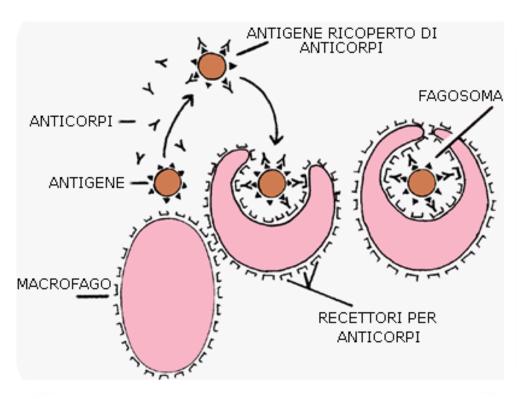
Il lisozima contenuto nella saliva e nelle lacrime e gli enzimi digestivi dell'intestino tenue uccidono molti batteri.


CIGLIA

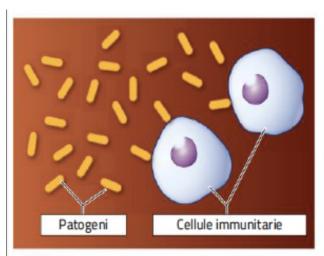
I peli e le ciglia presenti sulla superficie delle vie respiratorie allontanano dai polmoni i patogeni intrappolati nel muco.

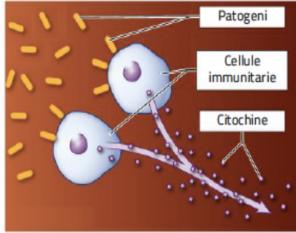

CERUME

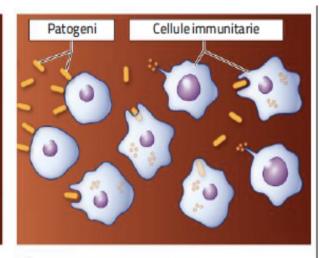
Il cerume è una sostanza appiccicosa che intrappola i patogeni presenti nel canale uditivo.


LE CELLULE IMMUNITARIE E GLI ORGANI LINFATICI

Il sistema immunitario è costituito dai globuli bianchi, che si sviluppano e risiedono negli organi del sistema linfatico.


MACROFAGI

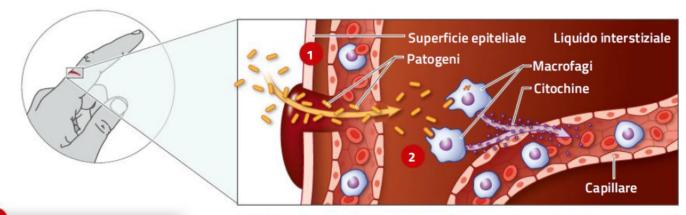

Gli organismi
estranei vengono
riconosciuti e
fagocitati dai
macrofagi presenti
nei tessuti o dai
neutrofili circolanti



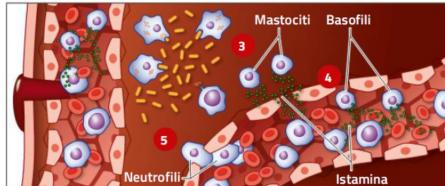
LE TRE FASI DELL'IMMUNITÀ INNATA

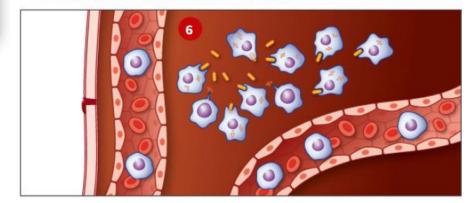
■ IDENTIFICARE L'INVASORE

Le cellule dell'immunità aspecifica riconoscono alcune molecole presenti sulla superficie dei patogeni e vi si legano, segnalando la presenza del patogeno. 2 CHIAMARE RINFORZI


Le cellule immunitarie rilasciano proteine segnale chiamate «citochine», che richiamano altre cellule immunitarie nel sito dell'infezione o segnalano di avviare ulteriori misure di difesa. **E** ATTACCARE E DISTRUGGERE

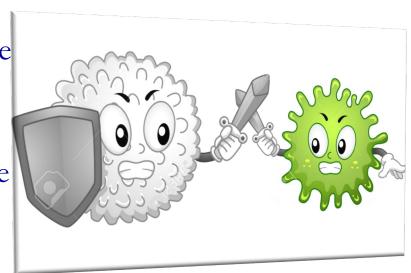
Cellule immunitarie specializzate fagocitano, distruggono e demoliscono i patogeni e le cellule da essi infettate.


INFIAMMAZIONE


- ♣ I macrofagi attivati secernono citochine e mediatori chimici che aumentano il flusso sanguigno locale e richiamano altre cellule fagocitiche
- ♣ Espongono sulla membrana frammenti digeriti delle proteine estranee attivando i linfociti T
- Secernono citochine che attivano la risposta immunitaria specifica

- Se ci tagliamo con un coltello, i patogeni presenti sulla lama penetrano nell'organismo attraverso la pelle lesionata.
- I macrofagi che si trovano nei tessuti intorno al taglio iniziano a fagocitare i patogeni e a rilasciare citochine, richiamando fagociti e altri tipi di globuli bianchi nel sito.
- I basofili in circolo nel sangue e i mastociti presenti nei tessuti innescano la risposta infiammatoria rilasciando istamina.

- L'istamina porta alla
 vasodilatazione dei capillari
 che circondano l'area
 lesionata; l'afflusso di sangue
 aumenta e altre cellule
 giungono sul luogo
 dell'infezione.
- L'istamina aumenta la permeabilità dei capillari, permettendo ai neutrofili di passare dal sangue al tessuto infetto.
- La risposta infiammatoria prosegue fino alla completa eliminazione dei patogeni e la pelle si rigenera.



IMMUNITÀ SPECIFICA

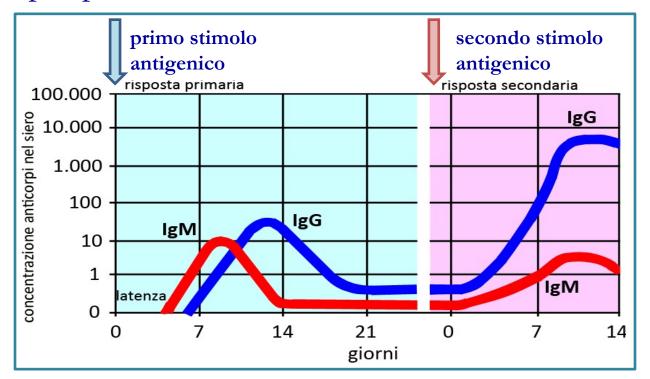
- Detta anche adattativa
- # È più tardiva, ma altamente specifica
- LE in grado di distinguere le sostanze proprie (self) da quelle estranee (non self)
- Le sostanze estranee che attivano la risposta specifica sono detti antigeni
- La sua efficacia aumenta con la successiva esposizione all'antigene, effetto memoria
- Compare nei vertebrati

ANTIGENI

- molecole in grado di attivare il sistema immunitario
- sostanze estranee all'organismo ad alto peso molecolare (proteine lipopolisaccaridi)
- si trovano sulla superficie delle cellule oppure si possono trovare liberi (antigeni circolanti)

RISPOSTA IMMUNE SPECIFICA

La risposta immune specifica viene avviata dal riconoscimento dell'antigene da parte di linfociti specifici, che rispondono proliferando e differenziandosi in cellule effettrici, la cui funzione è quella di eliminare l'antigene


- Lesistono 2 tipi di risposta:
 - Primaria
 - Secondaria

RISPOSTA PRIMARIA

- ♣ Si verifica la prima volta che un antigene entra in contatto con l'organismo
- ♣ Occorrono circa 5-6 giorni prima che le cellule effettrici entrino in funzione
- ♣ Circa 10-15 giorni prima che raggiunga il massimo dell'efficienza

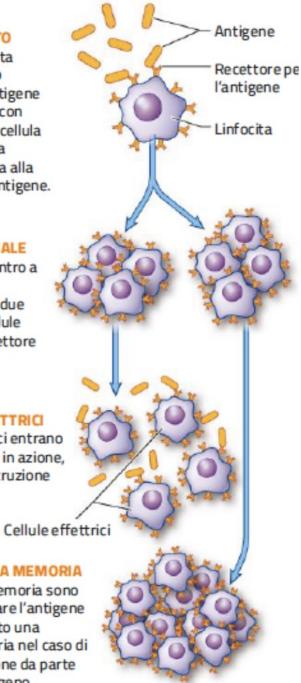
RISPOSTA SECONDARIA

- ♣ Si verifica ogniqualvolta un antigene entra in contatto successivamente alla prima
- La risposta è molto più efficace e rapida, sono sufficienti 1-2 giorni per attivare il sistema immunitario a produrre anticorpi specifici

RICONOSCIMENTO

Quando un linfocita dotato di un certo recettore per l'antigene entra in contatto con quell'antigene, la cellula avvia una risposta primaria che porta alla distruzione dell'antigene.

SELEZIONE CLONALE


Il linfocita va incontro a ripetute divisioni cellulari, creando due popolazioni di cellule con lo stesso recettore per l'antigene.

LE CELLULE EFFETTRICI

Le cellule effettrici entrano immediatamente in azione, portando alla distruzione dell'antigene.

LE CELLULE DELLA MEMORIA

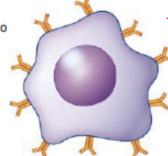
Le cellule della memoria sono in grado di ricordare l'antigene e di mettere in atto una risposta secondaria nel caso di una nuova infezione da parte dello stesso patogeno.

Cellule della memoria

LA RISPOSTA PRIMARIA E LA RISPOSTA SECONDARIA

Nella risposta primaria, le **cellule effettrici** rispondono all'antigene e contribuiscono a eliminarlo.

In caso di un secondo contatto con l'antigene, le **cellule della memoria** prodotte durante la risposta primaria attivano la risposta secondaria, più rapida e intensa.


COSTITUENTI DELLA RISPOSTA SPECIFICA

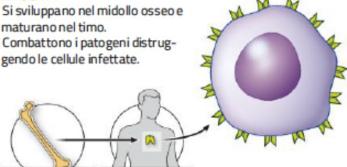
I globuli bianchi responsabili della risposta immunitaria specifica sono i linfociti

LINFOCITI B

 Si sviluppano e maturano nel midollo osseo.

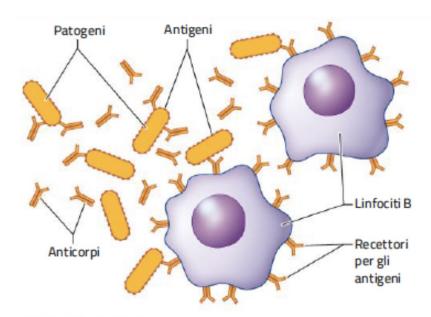
 Combattono i patogeni rilasciando anticorpi nei liquidi corporei in risposta alla presenza di un antigene.

Linfociti B: immunità Umorale

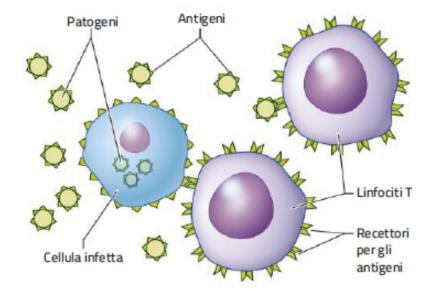

LINFOCITI T

 Si sviluppano nel midollo osseo e maturano nel timo.

Midollo osseo


 Combattono i patogeni distruggendo le cellule infettate.

Midollo osseo


Timo

Linfociti T: immunità Cellulo-mediata

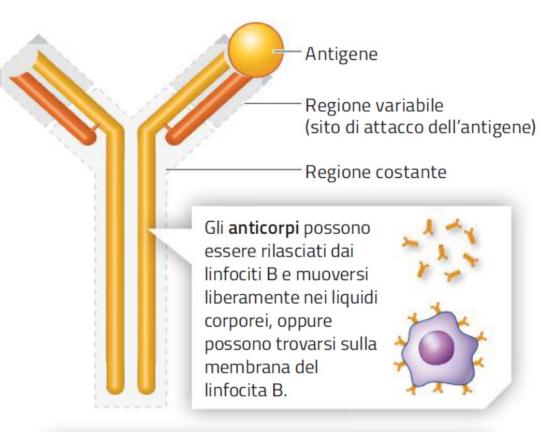
IMMUNITÀ UMORALE

- Fornisce una difesa contro patogeni e tossine che entrano in circolo nei liquidi corporei, come il sangue e la linfa.
- Si esplica attraverso i linfociti B che rilasciano anticorpi nei liquidi corporei, agevolando l'inglobamento e la distruzione dei patogeni da parte dei fagociti.

IMMUNITÀ MEDIATA DA CELLULE

- Fornisce una difesa contro patogeni e tossine che si trovano all'interno delle cellule.
- Si esplica attraverso i linfociti T che uccidono sia i patogeni che le cellule da essi infettate.

RISPOSTA UMORALE

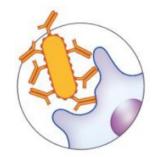

- La risposta umorale è attivata dai linfociti B che riconoscono l'antigene e si trasformano in cellule effettrici e cellule della memoria
- La risposta consiste nella produzione da parte delle cellule effettrici, le plasmacellule, di anticorpi specifici (IgM, IgG, IgD, IgA, IgE)

ANTICORPI

(gammaglobuline)

- molecole proteiche a forma di Y formate dall'assemblaggio di 4 catene polipeptidiche, a due a due uguali
- hanno la funzione di neutralizzare corpi estranei (batteri, virus) riconoscendo e legandosi all'antigene
- per ogni antigene esiste un corrispondente anticorpo

La **regione costante** è la stessa per tutti gli anticorpi della stessa classe; la forma della **regione variabile** rende ogni anticorpo unico e capace di riconoscere uno specifico antigene.

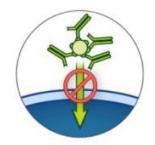

INTERAZIONE ANTIGENE-ANTICORPO

L'azione degli anticorpi non è diretta, ma agiscono in altri modi:

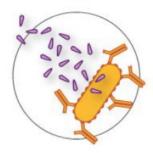
- Neutralizzano i patogeni, impedendo loro di entrare nelle cellule;
- Segnalano la loro presenza ai globuli bianchi;
- Agglutinano gli antigeni creando complessi antigene- anticorpo ben riconoscibili dai fagociti;
- Richiamano le proteine del complemento che lisano le membrane cellulari dei batteri.


SEGNALAZIONE

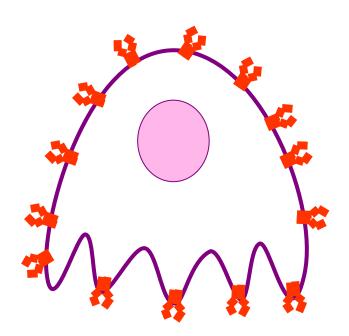
Gli anticorpi si legano agli antigeni presenti sulla superficie dei patogeni e ne segnalano la presenza ai fagociti.


AGGLUTINAZIONE

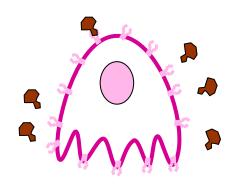
Gli anticorpi provocano la formazione di agglomerati dei patogeni e degli antigeni in circolo, agevolandone l'identificazione e la distruzione da parte dei fagociti.


NEUTRALIZZAZIONE

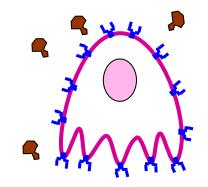
Gli anticorpi rivestono la superficie dei patogeni, impedendone l'ingresso nelle cellule del corpo.

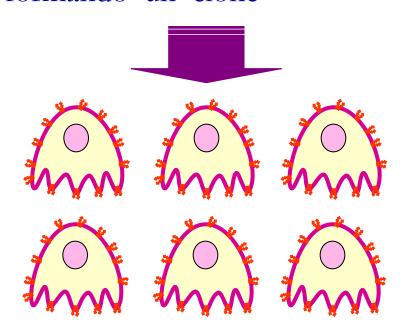

FISSAZIONE DELLE PROTEINE DEL COMPLEMENTO

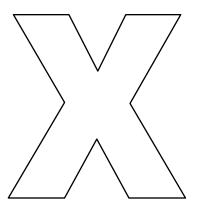
Gli anticorpi richiamano le proteine del complemento, che perforano la membrana dei patogeni e li uccidono per lisi.



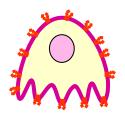
LINFOCITI B


- Vengono prodotti in continuazione dal midollo osseo
- ♣ Entrano in circolo nel sangue e si localizzano principalmente nei linfonodi e negli organi linfatici
- ♣ Ogni linfocita presenta recettori di membrana specifici, simili agli anticorpi, in grado di legare un solo antigene
- ♣ Se i linfociti non incontrano un antigene complementare al loro recettore muoiono nel giro di poche ore (8 ore circa)

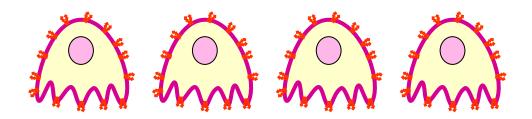

SELEZIONE CLONALE

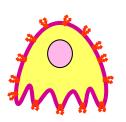


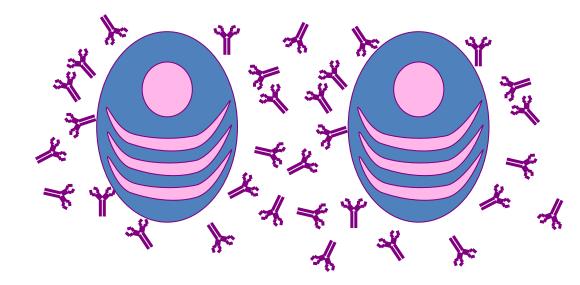
I linfociti che legano l'antigene si attivano e si moltiplicano formando un clone



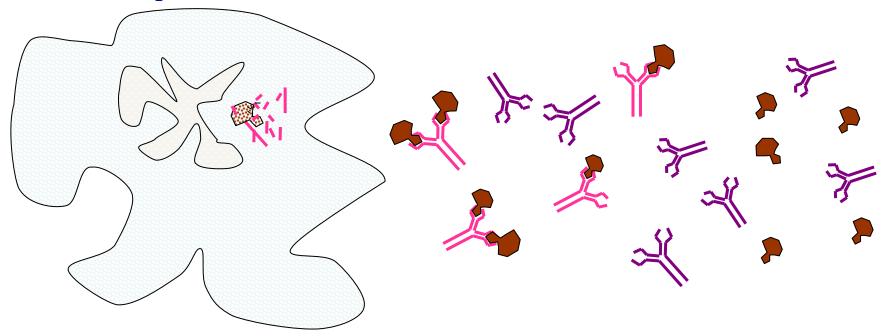
I linfociti che non legano l'antigene muoiono nel giro di poche ore




CELLULE EFFETTRICI

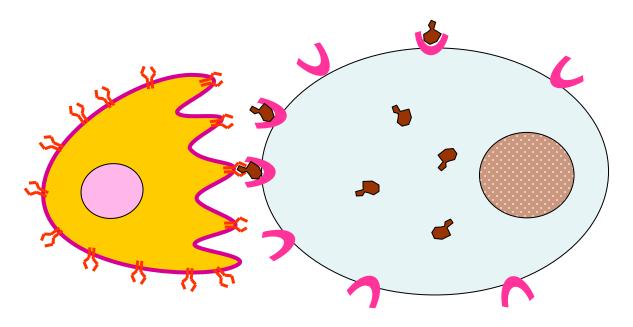


Alcuni linfociti del clone tornano in circolo come linfociti della memoria


La maggior parte del clone migra negli organi linfoidi e si trasforma in plasmacellule che producono anticorpi

COMPLESSO ANTIGENE-ANTICORPO

- Gli anticorpi vengono liberati nel sangue dove legano l'antigene
- → Gli anticorpi legati all'antigene attivano il complemento, i macrofagi e più in generale i componenti dell'immunità naturale che provvedono ad eliminare i complessi antigeneanticorpo



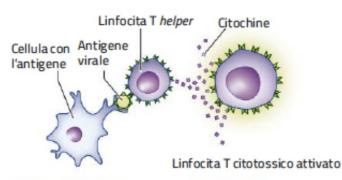
LINFOCITI T

- 4 Sono prodotti dal midollo osseo
- ♣ Passano quindi nel timo dove diventano maturi e acquisiscono la capacità di riconoscere gli antigeni
- ♣ Non producono anticorpi e costituiscono l'immunità cellulo-mediata
- 4 Si dividono in due popolazioni distinte:
 - Helper, o CD4
 - Citotossici, o CD8

ATTIVAZIONE DEI LINFOCITI T

- ♣ I linfociti T si attivano quando legano antigeni presenti sulla superficie di altre cellule associati a proteine
- ♣ Parte dei linfociti T attivati vanno a costituire cellule della memoria

LINFOCITI T HELPER

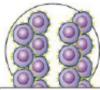

- Riconoscono peptidi antigenici legati a proteine espresse sulla membrana di altre cellule
- Quando legano tali antigeni esposti sulle membrane cellulari si moltiplicano e liberano proteine dette citochine
- Le citochine aiutano i linfociti B e T ad attivarsi, richiamano i macrofagi e innescano il processo infiammatorio

LINFOCITI T CITOTOSSICI

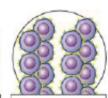
- Riconoscono peptidi antigenici legati a proteine espresse sulla membrana di altre cellule
- ♣ Se attivati si moltiplicano, attaccano e distruggono le cellule che presentano sulla membrana l'antigene che li ha attivati
- Agiscono eliminando le cellule infettate da virus o da parassiti endocellulari, o cellule tumorali che presentano proteine anomale

LA RISPOSTA CELLULO-MEDIATA: I LINFOCITI T

I linfociti T helper non uccidono direttamente le cellule infette, ma stimolano i linfociti B a produrre anticorpi e i linfociti T citotossici a uccidere le cellule infette.

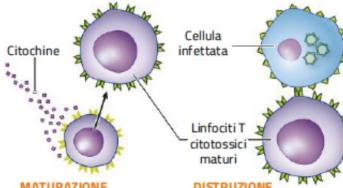


PRESENTAZIONE E RICONOSCIMENTO


Una cellula portatrice dell'antigene espone i frammenti digeriti del virus a un linfocita T helper, che riconosce l'antigene virale.

ATTIVAZIONE

Legandosi alla cellula presentante l'antigene, il linfocita T helper inizia a produrre citochine che attivano i linfociti T citotossici (oltre ai linfociti B della risposta umorale).


Linfociti T citotossici (cellule effettrici e della memoria)

Linfociti T helper(cellule effettrici e della memoria)

ESPANSIONE CLONALE

I linfociti T helpere citotossici vanno incontro a espansione clonale, producendo una moltitudine di cellule effettrici e della memoria specifiche per un dato antigene virale.

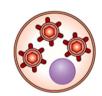
MATURAZIONE

Altre citochine prodotte dai linfociti T helper inducono la maturazione dei linfociti T citotossici, che sono pronti a combattere il patogeno.

DISTRUZIONE

I linfociti T citotossici maturi circolano nel flusso sanguigno, distruggendo le cellule infettate da uno specifico antigene virale.

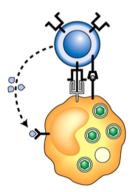
immunità umorale


immunità cellulo-mediata

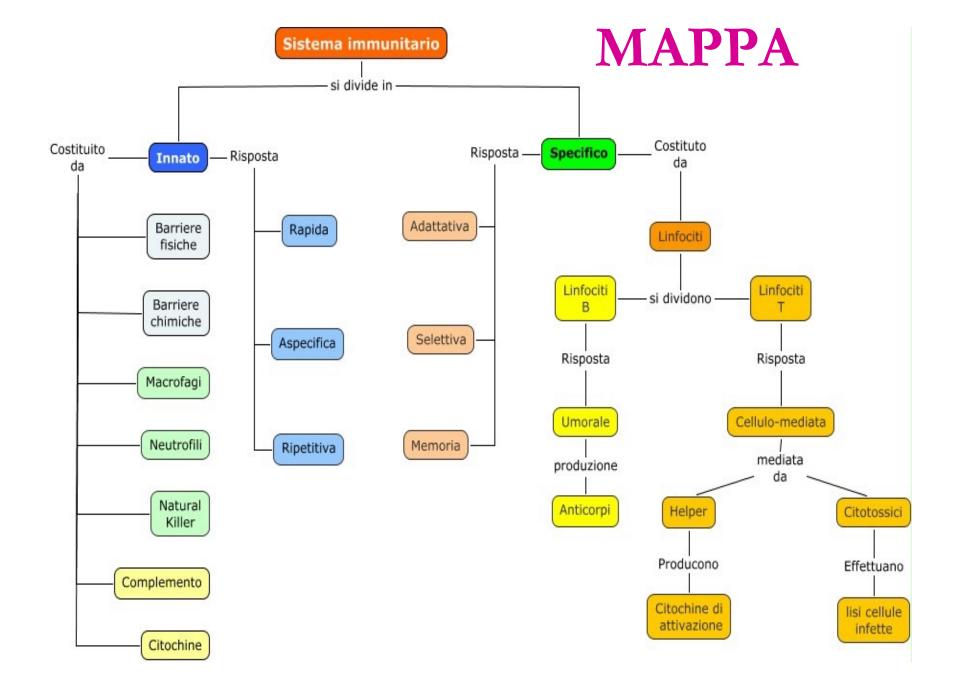
microbo

microbi fagocitati all'interno di un macrofago

microbi intracellulari (per es., virus) che si replicano in una cellula infettata


linfocita T helper

linfocita T citotossico


attivazione dei macrofagi e uccisione dei microbi fagocitati


uccisione delle cellule infettate ed eliminazione dei serbatoi di infezione

funzioni

blocco dell'infezione ed eliminazione dei microbi

IMMUNITÀ ACQUISITA

ATTIVA

conseguenza di una malattia infettiva

PASSIVA

placenta/colostro

ATTIVA

stimolazione da vaccini

PASSIVA

inoculazione di sieri o immunoglobuline