

Machine Learning (part II)

Hebbian Learning and Component Analysis

Angelo Ciaramella

Hebbian learning and NNs

- NNs based on the Hebb's rule
 - Oja's rule
 - computer scientist Erkki Oja
 - Unsupervised learning
 - Symmetric Oja Space
 - Sanger's rule
 - scientist Terence D. Sanger
 - Unsupervised learning
 - Selective Principal Components
 - Generates an algorithm for
 - Principal Component Analysis (PCA)
 - non-linear PCA
 - Independent Component Analaysis (ICA)

Principal Component Analysis

- Principal Component Analysis (PCA) is a statistical technique
 - Dimensionality reduction
 - Lossy data compression
 - Feature extraction
 - Data visualization
- It is also known as the Karhunen-Loeve transform

PCA can be defined as the principal subspace such that the variance of the projected data is maximized

Second-Order methods

The second-order methods are the most popular methods to find a linear transformation

This methods find the representation using only the information contained in the covariance matrix of the data vector x

PCA is widely used in signal processing, statistics, and neural computing

Principal Components

In a linear projection down to one dimension, the optimum choice of projection, in the sense of minimizing the sum-of-squares error, is obtained first subtracting off the mean of the data set, and then projecting onto the first eigenvector \mathbf{u}_1 of the covariance matrix.

We introduce a complete orthonormal set of D-dimensional basis vectors (i=1,...,D)

$$\mathbf{u}_{i}^{T}\mathbf{u}_{j}=\delta_{ij}$$

Because this basis is complete, each data point can be represented by a linear combination of the basis vectors

$$\mathbf{x}_n = \sum_{i=1}^D \alpha_{ni} \mathbf{u}_i$$

We can write also that

$$\mathbf{x}_{n} = \sum_{i=1}^{D} \left(\mathbf{x}_{n}^{T} \mathbf{u}_{i} \right) \mathbf{u}_{i}$$

$$\boldsymbol{\alpha}_{nj} = \mathbf{x}_{n}^{T} \mathbf{u}_{j}$$

 Our goal is to approximate this data point using a representation involving a restricted number M <
 D of variables corresponding to a projection onto a lower-dimensional subspace

$$\widetilde{\mathbf{x}}_n = \sum_{i=1}^M z_{ni} \mathbf{u}_i + \sum_{i=M+1}^D b_i \mathbf{u}_i$$

As our distortion measure we shall use the squared distance between the original point and its approximation averaged over the data set so that our goal is to minimize

$$J = \frac{1}{N} \sum_{n=1}^{N} \left\| \mathbf{x}_{n} - \widetilde{\mathbf{x}}_{n} \right\|^{2}$$

The general solution is obtained by choosing the basis to be eigenvectors of the covariance matrix given by

$$\mathbf{S}\mathbf{u}_i = \lambda_i \mathbf{u}_i$$

The corresponding value of the distortion measure is then given by

$$J = \sum_{i=M+1}^{D} \lambda_i$$

We minimize this error selecting the eigenvectors defining the principal subspace are those corresponding to the M largest eigenvalues

Complex distributions

A linear dimensionality reduce technique, such as PCA, is unable to detect the lower dimensionality. In this case PCA gives two eigenvectors with equal eigenvalues. The data can described by a single eigenvalue

Addition of a small level of noise to data having an intrinsic. Dimensionality to 1 can increase its intrinsic dimensionality to 2. The data can be represented to a good approximation by a single variable η and can be regarded as having an intrinsic dimensionality of 1.

Unsupervised Neural Networks

Typically Hebbian type learning rules are used

There are two type of NN able to extract the Principal Components:

Symmetric (Oja, 1989)

■ Hierarchical (Sanger, 1989)

Information and Hebbian Learning

Information extraction

Hebbian learning - self-amplification

$$\Delta w_i = \eta y x_i$$

0

the net learns to respond the patterns that present the most frequent samples

Principal Component

- Weights can grow to infinity
 - Solution normalization (no local)

$$w_i = \frac{w_i}{\|\mathbf{w}\|}$$

- Competition mechanism for a stable solution
 - weights in the direction of maximum variance of the distribution
 - Maximization of the variance on the oputput
 - weights in the direction of the eigenvector corresponding to the maximum eigenvalue of the correlation matrix

$$C = \langle \mathbf{x}\mathbf{x}^{\mathsf{T}}\rangle_{\mu}$$

Oja's rule

Idea

Information feedback

ML - Component Analysis

Oja's rule

Normalization is not local

Oia's rule

$$\Delta w_j = \eta (x_j - w_j y)$$

Forgetting factor

More outputs

$$\Delta w_{ij} = \eta y_i \left(x_j - \sum_{k=1}^n w_{kj} y_k \right)$$

Syemmetric NN

Single layer Neural Network

$$E[\mathbf{y}^2] = E[(\mathbf{w}^T \mathbf{x})^2]$$

Symmetric PCA NN

Sanger's rule

Sanger's learning rule

$$\Delta w_{ij} = \eta y_i \left(x_j - \sum_{k=1}^i w_{kj} y_k \right)$$

Hierarchical NN

Single layer Neural Network

Oja's rule vs. Sanger's rule

- Oja's rule
 - Symmetric Space
 - Principal Components without a specific order
- Sanger's rule
 - Hierarchical space
 - Principal Components without a specific order
 - weights of the first output neuron corresponding to the first component, weights of the second neuron to the second residual component, and so on

Mixing matrix

Non-linear objective function

Maximization

 $\mathbf{x} \xrightarrow{\mathbf{w} \text{ (weights)}} E\{f(\mathbf{w}^T \mathbf{x})\}$

L-dimensional vector

where E is the expectation with respect to the (unknown) density of \mathbf{x} and f(.) is a continue function (e.g. $\ln \cosh(.)$)

Taylor series

$$\ln \cosh(y) = \frac{1}{2}y^2 - \frac{1}{12}y^4 + \frac{1}{45}y^6 + O(y^8)$$

$$E\{\ln\cosh(y)\} = \frac{1}{2}E\{(w^{T}x)^{2}\} - \frac{1}{12}E\{(w^{T}x)^{4}\} + \frac{1}{45}E\{(w^{T}x)^{6}\} + E\{O((w^{T}x)^{2})\}$$

$$C = I$$
 and $\frac{1}{2}E\{(w^Tx)^2\} = \frac{1}{2}$

That is dominating, and the kurtosis is optimized

Robust and non-linear PCA

ML - Component Analysis

Cocktail party

Sources

S

A

Mixtures

X

W

Estimated-Sources

y

Source estimation

Source signals

Mixed signals

Estimated signals

$$x_1(t) = a_{11}s_1(t) + a_{12}s_2(t) + a_{13}s_3(t)$$

 $x_2(t) = a_{21}s_1(t) + a_{22}s_2(t) + a_{23}s_3(t)$
 $x_3(t) = a_{31}s_1(t) + a_{32}s_2(t) + a_{33}s_3(t)$

$$y_1(t) = w_{11}x_1(t) + w_{12}x_2(t) + w_{13}x_3(t)$$

 $y_2(t) = w_{21}x_1(t) + w_{22}x_2(t) + w_{23}x_3(t)$
 $y_3(t) = w_{31}x_1(t) + w_{32}x_2(t) + w_{33}x_3(t)$

 $x_1(t)$, $x_2(t)$, $x_3(t)$ are the observed signals, $s_1(t)$, $s_2(t)$, $s_3(t)$ the source signals

 $y_1(t), y_2(t), y_3(t)$ are the separated signals

