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Hebbian learning and NNs

¥ NNs based on the Hebb’s rule
e Oja’s rule
computer scientist Erkki Oja
Unsupervised learning

Symmetric Oja Space

B Sanger’s rule

scientist Terence D. Sanger
Unsupervised learning

Selective Principal Components

¥ Generates an algorithm for
m Principal Component Analysis (PCA)
m non-linear PCA
m Independent Component Analaysis (ICA)
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Principal Component Analysis

» Principal Component Analysis (PCA) is a statistical
technique

e Dimensionality reduction
B Lossy data compression
¥ Feature extraction

# Data visualization

It is also known as the Karhunen-Loeve transform

¥ PCA can be defined as the principal subspace
such that the variance of the projected data is
maximized
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Second-Order methods

» The second-order methods are the most popular
methods to find a linear transformation

» This methods find the representation using only the

information contained in the covariance matrix of
the data vector x

» PCA is widely used in signal processing, statistics,
and neural computing

ML — Component Analysis
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Principal Components
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ML — Component Analysis

In a linear projection down to one dimension, the optimum choice of projection,

in the sense of minimizing the sum-of-squares error, is obtained first subtracting

off the mean of the data set, and then projecting onto the first eigenvector v, of
the covariance matrix.




Projection error minimization

¥ We introduce a complete orthonormal set of D-
dimensional basis vectors (i=1,...,D)

» Because this basis is complete, each data point

can be represented by a linear combination of the
basis vectors
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Projection error minimization

ML — Component Analysis
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¥ We can write also that

D
_ T T
_Z(X”ui)li anj _Xnuj

i=1

¥ Our goal is to approximate this data point using a
representation involving a restricted number M <
D of variables corresponding to a projection onto
a lower-dimensional subspace

szu + Zbu

=M +1
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Projection error minimization

ML — Component Analysis

As our distortion measure we shall use the squared
distance between the original point and its

approximation averaged over the data set so that
our godal is fo minimize
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The general solution is obtained by choosing the

basis to be eigenvectors of the covariance matrix
given by

Su, = Au,




Projection error minimization

ML — Component Analysis
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¥ The corresponding value of the distortion measure
is then given by

D
J= Y2

=M +1

r We minimize this error selecting the eigenvectors
defining the principal subspace are those
corresponding to the M largest eigenvalues
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Complex distributions

ML — Component Analysis

A linear dimensionality reduce technique, such as PCA,
is unable to detect the lower dimensionality. In this case
PCA gives two eigenvectors with equal eigenvalues.
The data can described by a single eigenvalue

Addition of a small level of noise to data having an
intrinsic. Dimensionality to 1 can increase its intrinsic
dimensionality to 2. The data can be represented to
a good approximation by a single variable 1 and
can be regarded as having an intrinsic
dimensionality of 1.




Unsupervised Neural Networks

ML — Component Analysis
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» Typically Hebbian type learning rules are used

r There are two type of NN able to extract the
Principal Components:

¥ Symmetric (Oja, 1989)

¥ Hierarchical (Sanger, 1989)



Information and Hebbian Learning

¥ Information extraction

output y = 2 W;X;
L
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§ Hebbian learning - self-amplification
|
= Aw;= nyx;
the net learns to respond the patterns that

present the most frequent samples
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Principal Component

ML — Component Analysis
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r Weights can grow to infinity

B Solution — normalization (no - local)

w; = ——
[lwl]
¥ Competition mechanism for a stable solution

weights in the direction of maximum variance of the
distribution

Maximization of the variance on the oputput

weights in the direction of the eigenvector corresponding to
the maximum eigenvalue of the correlation matrix

¢ = (XXT>M
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Oja's rule
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Oja's rule

¥ Normalization is not local

¢ Oid’s rule

Awj= n(x; — w;y)

Forgetting factor

¥ More outputs

n
Aw;i= nyi| xj — Z Wi Vi
k=1
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Syemmetric NN

Single layer Neural Network

11

ML — Component Analysis

E [yz ] =Fk L(WTx)2 ﬂ Symmetric PCA NN

S Objective function




Sanger's rule

» Sanger’s learning rule

Awi;= ny;| xj —

ML — Component Analysis
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Hierarchical NN

Single layer Neural Network

Yl + Yz + me‘
1
7
1%
"

ML — Component Analysis

Hierarchical PCA NN
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Oja's rule vs. Sanger's rule

¢ Oja’s rule
B Symmetric Space

B Principal Components without a specific order

» Sanger’s rule
e Hierarchical space

e Principal Components without a specific order

weights of the first output neuron corresponding to the first
component, weights of the second neuron to the second
residual component, and so on

ML — Component Analysis
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ML — Component Analysis

Non-linear objective function

Maximization
w (weights)

X BV (WTx))

L-dimensional vector

where £ 1s the expectation with respect to the (unknown)
density of x and f£(.) 1s a continue function (e.g. In cosh(.))

Taylor series
1 1 |
Incosh(y)=—y*——p*+—v* + 00"
(») SV Y Y () l

E{ln cosh(y)} = A E{(WT)C)2 }— %2 E{(WTX)4 }"‘
Vs EI07 0"+ Elow o)

=7 and |1 wix) j=
c=1 and L Efwf]- 15 L pfur

That is dominating, and
the kurtosis i1s optimized
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Robust and non-linear PCA

ML — Component Analysis

Robust PCA

Standard PCA

Ely*]= |(w =) ]

Nonlinear PCA

|
J,(w)=E[f(x"w)]+

1(i)

Z A [Wz'TWj - é‘zj]

JZ(ei) = 1TE|:f(X_ﬁi)j|

Elp, 0 |
1(Q)

b(k)=x, = gly, (), (k)

w(k+1) =w(k)+1,8(y,(k))e, (k)

wik+1) = w(k)+ ﬂk[wi(k) (e, (h)x, +J

+x,W,(k)g(e, (1))

w,(k+1)=w,(k)+ pg(y, (k)b (k)

Descendent gradient algorithm

1()

e(k) =x, —Zyj(k)wj(k)




Cocktail party
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Source estimation
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= a11 Sl(t) + a1252 (t) +  @a1353 (t)
= ansi(t) + axmsa(t) + agss3(i)
= @318 (t) + a3289 (t) + a33S3 (t)
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x1(t), x»(¢),x5(¢) are the observed signals,
s1(7), s»(1), s3(¢) the source signals
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Estimated signals

1 (t) = wixi(t) + wisxe(t) + wiszs(?)
Y2 (t) = 1U21£l?1(t) +  wosx2 (t) +  woszxs (t)
ys(t) = wsix1(t) + wsexa(t) + wsszs(t)

v1(t), ¥2(?),y3(?) are the separated signals



