Machine Learning (part II)

Hebbian Learning

and

Component Analysis

Angelo Ciaramella

Hebbian learning and NNs

- NNs based on the Hebb's rule
- Oja's rule
- computer scientist Erkki Oja
\square Unsupervised learning
\square Symmetric Oja Space
- Sanger's rule
- scientist Terence D. Sanger
\square Unsupervised learning
- Selective Principal Components
- Generates an algorithm for

■ Principal Component Analysis (PCA)
■ non-linear PCA
■ Independent Component Analaysis (ICA)

Principal Component Analysis

- Principal Component Analysis (PCA) is a statistical technique
- Dimensionality reduction
- Lossy data compression
- Feature extraction
- Data visualization
- It is also known as the Karhunen-Loeve transform
- PCA can be defined as the principal subspace such that the variance of the projected data is maximized

Second-Order methods

- The second-order methods are the most popular methods to find a linear transformation
- This methods find the representation using only the information contained in the covariance matrix of the data vector \mathbf{x}
- PCA is widely used in signal processing, statistics, and neural computing

Principal Components

In a linear projection down to one dimension, the optimum choice of projection, in the sense of minimizing the sum-of-squares error, is obtained first subtracting off the mean of the data set, and then projecting onto the first eigenvector $\mathbf{u}_{\mathbf{1}}$ of the covariance matrix.

Projection error minimization

- We introduce a complete orthonormal set of D dimensional basis vectors ($i=1, \ldots, D$)

$$
\mathbf{u}_{i}^{T} \mathbf{u}_{j}=\delta_{i j}
$$

- Because this basis is complete, each data point can be represented by a linear combination of the basis vectors

$$
\mathbf{x}_{n}=\sum_{i=1}^{D} \alpha_{n i} \mathbf{u}_{i}
$$

Projection error minimization

- We can write also that

$$
\mathbf{x}_{n}=\sum_{i=1}^{D}\left(\mathbf{x}_{n}^{T} \mathbf{u}_{i}\right) \mathbf{u}_{i}
$$

$$
\alpha_{n j}=\mathbf{x}_{n}^{T} \mathbf{u}_{j}
$$

- Our goal is to approximate this data point using a representation involving a restricted number $M<$ D of variables corresponding to a projection onto a lower-dimensional subspace

$$
\widetilde{\mathbf{x}}_{n}=\sum_{i=1}^{M} z_{n i} \mathbf{u}_{i}+\sum_{i=M+1}^{D} b_{i} \mathbf{u}_{i}
$$

Projection error minimization

- As our distortion measure we shall use the squared distance between the original point and its approximation averaged over the data set so that our goal is to minimize

$$
J=\frac{1}{N} \sum_{n=1}^{N}\left\|\mathbf{x}_{n}-\widetilde{\mathbf{x}}_{n}\right\|^{2}
$$

- The general solution is obtained by choosing the basis to be eigenvectors of the covariance matrix given by

$$
\mathbf{S} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}
$$

Projection error minimization

- The corresponding value of the distortion measure is then given by

$$
J=\sum_{i=M+1}^{D} \lambda_{i}
$$

- We minimize this error selecting the eigenvectors defining the principal subspace are those corresponding to the M largest eigenvalues

Complex distributions

A linear dimensionality reduce technique, such as PCA, is unable to detect the lower dimensionality. In this case PCA gives two eigenvectors with equal eigenvalues.
The data can described by a single eigenvalue

Unsupervised Neural Networks

- Typically Hebbian type learning rules are used
- There are two type of NN able to extract the Principal Components:
- Symmetric (Oja, 1989)
- Hierarchical (Sanger, 1989)

Information and Hebbian Learning

- Information extraction

Hebbian learning - self-amplification

$$
\Delta w_{i}=\eta y x_{i}
$$

the net learns to respond the patterns that present the most frequent samples

Principal Component

- Weights can grow to infinity
- Solution - normalization (no - local)

$$
w_{i}=\frac{w_{i}}{\|\mathbf{w}\|}
$$

- Competition mechanism for a stable solution
- weights in the direction of maximum variance of the distribution
- Maximization of the variance on the oputput
\square weights in the direction of the eigenvector corresponding to the maximum eigenvalue of the correlation matrix

$$
C=\left\langle\mathbf{x} \mathbf{x}^{\mathbf{T}}\right\rangle_{\mu}
$$

Oja's rule

- Idea

Information feedback

Oja's rule

- Normalization is not local
- Oia's rule

$$
\Delta w_{j}=\eta\left(x_{j}-w_{j} y\right)
$$

Forgetting factor

- More outputs

$$
\Delta w_{i j}=\eta y_{i}\left(x_{j}-\sum_{k=1}^{n} w_{k j} y_{k}\right)
$$

Syemmetric NN

Single layer Neural Network

ML - Component Analysis

$$
E\left[\mathbf{y}^{2}\right]=E\left[\left(\mathbf{w}^{T} \mathbf{x}\right)^{2}\right]
$$

Symmetric PCA NN

Objective function

Sanger's rule

- Sanger's learning rule

$$
\Delta w_{i j}=\eta y_{i}\left(x_{j}-\sum_{k=1}^{i} w_{k j} y_{k}\right)
$$

Hierarchical NN

Single layer Neural Network

Oja's rule vs. Sanger's rule

- Oja's rule
- Symmetric Space
- Principal Components without a specific order
- Sanger's rule
- Hierarchical space
- Principal Components without a specific order
- weights of the first output neuron corresponding to the first component, weights of the second neuron to the second residual component, and so on

Mixing matrix

Non-linear objective function

$$
\mathbf{X} \xrightarrow{\text { w (weights) }} \stackrel{\text { Maximization }}{ } \underset{ }{ } \mathrm{E}\left\{f\left(\mathbf{W}^{T} \mathbf{X}\right)\right\}
$$

L-dimensional vector
where E is the expectation with respect to the (unknown) density of \mathbf{x} and $f($.$) is a continue function (e.g. \ln \cosh ()$.

Taylor series

$$
\ln \cosh (y)=\frac{1}{2} y^{2}-\frac{1}{12} y^{4}+\frac{1}{45} y^{6}+O\left(y^{8}\right)
$$

$$
\begin{aligned}
& E\{\ln \cosh (y)\}=1 / 2 E\left\{\left(w^{T} x\right)^{2}\right\}-1 / 12 E\left\{\left(w^{T} x\right)^{4}\right\}+ \\
& 1 / 45 E\left\{\left(w^{T} x\right)^{6}\right\}+E\left\{O\left(\left(w^{T} x\right)^{2}\right)\right\}
\end{aligned}
$$

$C=I$ and $1 / 2 E\left\{\left(w^{T} x\right)^{2}\right\}=1 / 2$

$$
-\frac{1}{12} E\left\{\left(w^{T} x\right)^{4}\right\}
$$

Robust and non-linear PCA

Descendent gradient algorithm

$$
e(k)=\mathbf{x}_{k}-\sum_{j=1}^{I(i)} \mathbf{y}_{j}(k) \mathbf{w}_{j}(k)
$$

Cocktail party

Source estimation

Source signals

Mixed signals

Estimated signals

$$
\begin{array}{|l}
x_{1}(t)=a_{11} s_{1}(t)+a_{12} s_{2}(t)+a_{13} s_{3}(t) \\
x_{2}(t)=a_{21} s_{1}(t)+a_{22} s_{2}(t)+a_{23} s_{3}(t) \\
x_{3}(t)=a_{31} s_{1}(t)+a_{32} s_{2}(t)+a_{33} s_{3}(t) \\
\hline
\end{array}
$$

$x_{1}(\mathrm{t}), x_{2}(t), x_{3}(t)$ are the observed signals, $s_{1}(t), s_{2}(t), s_{3}(t)$ the source signals
$y_{1}(t)=w_{11} x_{1}(t)+w_{12} x_{2}(t)+w_{13} x_{3}(t)$
$y_{2}(t)=w_{21} x_{1}(t)+w_{22} x_{2}(t)+w_{23} x_{3}(t)$
$y_{3}(t)=w_{31} x_{1}(t)+w_{32} x_{2}(t)+w_{33} x_{3}(t)$
$y_{1}(\mathrm{t}), y_{2}(t), y_{3}(t)$ are the separated signals

