Machine Learning (part II)

Hopfield
 Neural Network

Angelo Ciaramella

Introduction

- Hopfield Neural Network
- 1982 - John Hopfield
- based on concept of statistical mechanics

Energy function

- Extension
- Boltzmann Machine

Learning

- Weights adaption
- Activations change based on the outputs of other units
- Finite states sequence up to the stability point
- The point of stability is the state of equilibrium
- Aim
- storage and recognition
- learn a series of patterns
- after the training phase the network is able to recover an original pattern from one incomplete or corrupted by noise

Hopfield NN

$$
w_{i i}=0
$$

N bipolar units

$$
\Phi\left(A_{i}\right)=\left\{\begin{array}{c}
1 \text { if } A_{i}>\theta_{i} \\
-1 \text { otherwise }
\end{array}\right.
$$

Hebb's rule

- Each input unit performs input and output functions
- Pattern di input

$$
\mathrm{p}=\left[p_{1}, \ldots, p_{N}\right] \quad x_{i}=p_{i}
$$

z - Hebb's rule
$1 / \mathrm{N}$ Constant of proportionality

$$
\Delta w_{i j}^{\mu}=x_{i}^{\mu} x_{j}^{\mu}
$$

$$
w_{i j}=\frac{1}{N} \sum_{\mu=1}^{M} x_{i}^{\mu} x_{j}^{\mu}
$$

For M patterns

Moemorization of patterns

- Stability of a pattern

$$
\begin{gathered}
\Phi\left(A_{i}^{*}\right)=p_{i}^{*} \quad \forall i \\
A_{i}^{*}=\sum_{j} w_{i j} x_{j}^{*}=\frac{1}{N} \sum_{j} \sum_{\mu} x_{i}^{\mu} x_{j}^{\mu} x_{j}^{*}
\end{gathered}
$$

- Without pattern p^{*}

$$
A_{i}^{*}=x_{i}^{*}+\frac{1}{N} \sum_{j} \sum_{\mu \neq *} x_{i}^{\mu} x_{j}^{\mu} x_{j}^{*}
$$

Interference (crosstalk)

Net capability

- NN storage capability

$$
\frac{M}{N} \quad \begin{aligned}
& \text { patterns } \\
& \text { nodes }
\end{aligned}
$$

- Storage quantity

$$
C_{i}^{*}=-\frac{1}{N} x_{i}^{*} \sum_{j} \sum_{\mu \neq *} x_{i}^{\mu} x_{j}^{\mu} x_{j}^{*}
$$

It it is negative the crosstalk term has the same sign as the desired pattern x_{i}^{*}.

If it is positive and large then 1 , it is change the sign of x_{i}^{*} and bit i of pattern * is unstable.

Net capability

- For random patterns

$$
P_{\text {error }}=\operatorname{Prob}\left(x_{i}^{*}>1\right)
$$

- Binomial distribution

$$
\mu=0 \quad \sigma^{2}=\frac{M}{N}
$$

For large $M * N$ approximation (Gaussian)

Net capability

- Gaussian distribution

$$
\begin{gathered}
P_{\text {error }}=\frac{1}{\sqrt{2 \pi \sigma}} \int_{1}^{\infty} e^{-\frac{x^{2}}{2 \sigma^{2}}} d x= \\
\frac{1}{2}\left[1-\operatorname{erf}\left(\frac{1}{\sqrt{2 \sigma^{2}}}\right)\right]=\frac{1}{2}\left[1-\operatorname{erf}\left(\sqrt{\frac{N}{2 M}}\right)\right] \\
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-u^{2}} d u
\end{gathered}
$$

Net capability

- Error and limitation

- For linearment independent patterns
- Pseudoinversion method
- Storage capability N-1 patterns

Energy function

Energy function

Storage examples

Original

Degraded

Reconstruction

Images reconstruction examples

Storage and energy reduction

- For random patterns

$$
H=-\frac{1}{2} \sum_{i} \sum_{j \neq i} w_{i j} x_{i} x_{j}
$$

- New pattern

$$
H=\left[-\frac{1}{2} \sum_{i} \sum_{j \neq i} w_{i j}^{\mu \neq *} x_{i} x_{j}\right]+\left[-\frac{1}{2} \sum_{i} \sum_{j \neq i} w_{i j}^{*} x_{i}^{*} x_{j}^{*}\right]
$$

Storage and energy reduction

- Optimum of the second term

Positive values

$$
\frac{1}{2} \sum_{i} \sum_{j \neq i} w_{i j}^{*} x_{i}^{*} x_{j}^{*}=\frac{1}{2} \sum_{i} \sum_{j \neq i} x_{i}^{2} x_{j}^{2}
$$

- Hebbian learning rule

$$
w_{i j}=\sum_{\mu} x_{i}^{\mu} x_{j}^{\mu}
$$

Pattern recovering and energy reduction

- k-th unit

$$
H=-\frac{1}{2} \sum_{i \neq k} \sum_{j \neq k} w_{i j} x_{i} x_{j}-\frac{1}{2} x_{k} \sum_{i} w_{i k} x_{i}-\frac{1}{2} x_{k} \sum_{j} w_{k j} x_{j}
$$

- Reduction of the energy

$$
\Delta H=-\frac{1}{2}\left[\Delta x_{k} \sum_{i} w_{i k} x_{i}+\Delta x_{k} \sum_{j} w_{k j} x_{j}\right]
$$

- For symmetry (Hebbian learning)

$$
\Delta H=-\left[\Delta x_{k} \sum_{j} w_{k j} x_{j}\right] \quad\left\{\begin{array}{c}
\Phi\left(A_{i}\right)= \\
1 \text { if } A_{i}>\theta_{i} \\
-1 \text { otherwise }
\end{array}\right.
$$

Attractors

ML - Hopfield NN
Configuration space is symmetrically divided into two basins of attraction

Spurious states

- Hebb
- dynamical system which has attractors (the minima of the energy function)
- desired patterns which have been stored and are called retrieval states
- Other attractors
- reversed states

E mixture states

- spin glass states

Stochastic units

- Biased random decisions
- Replace the binary threshold units by binary stochastic units
- The "temperature" controls the amount of noise
- Decreasing all the energy gaps between configurations is equivalent to raising the noise level
- Simulated annealing

$$
\begin{aligned}
& P\left(x_{i}=1\right)=\frac{1}{1+e^{-\beta\left(\sum_{j} w_{i j} x_{j}\right)}} \\
& \beta=\frac{1}{k T}
\end{aligned}
$$

Stochastic units

- Probability of the states
- Boltzmann distribution
- Probability of the state

$$
\begin{aligned}
& P_{1}=k e^{-\frac{H_{1}}{T}} \quad \frac{P_{1}}{P_{2}}=\frac{k e^{-\frac{H_{1}}{T}}}{k e^{-\frac{H_{2}}{T}}}=e^{-\frac{\left(H_{1}-H 2\right)}{T}} \\
& H_{1}<H_{2} \quad \frac{P_{1}}{P_{2}}=e^{-\frac{\left(H_{1}-H 2\right)}{T}}>1 \\
& P_{1}>P_{2}
\end{aligned}
$$

