

Machine Learning (part II)

Hebbian Learning

Angelo Ciaramella

Introduction

- Artifical Neural Networks (ANNs) are at the very core of Deep Learning
 - powerful
 - scalable
- Complex ML tasks
 - classifying billions of images (e.g., Google Images)
 - powering speech recognition services (e.g., Apple's Siri),
 - recommending the best videos to watch to hundreds of millions of users every day (e.g., YouTube)
 - learning to beat the world champion at the game of Go by playing millions of games against itself (DeepMind's Alpha-Zero)

Biological neuron

Biological neurons

- behave in a rather simple way
- are organized in a vast network of billions of neurons
- each neuron typically connected to thousands of other neurons

Neural networks

Highly complex computations can be performed by a vast network of fairly simple neurons

Biological neuron

Biological Neuron

Biological Neural Network

Multiple layers in a biological neural network (human cortex)

Artificial neuron

Artificial neuron

$$z = \sum_{i=1}^{n} w_i x_i = \mathbf{w}^{\mathrm{T}} \mathbf{x}$$

output

sum

$$y = f(\mathbf{w}, \mathbf{x}) = \theta(z)$$

activation functions

$$\theta = \begin{cases} 1 & if \ z \ge 0 \\ 0 & if \ z < 0 \end{cases}$$

Heaviside

$$\theta = \begin{cases} -1 \text{ if } z < 0\\ 0 \text{ if } z = 0\\ +1 \text{ if } z > 0 \end{cases}$$

Signum

Activation functions

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1+e^{-z}}$	Logistic regression, Multi-layer NN	
Hyperbolic tangent	$\phi(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$	Multi-layer NN	

Weights adaption

- McCulloch-Pitts Neuron
 - fixed weights

- Learning
 - weights adaption
 - learning approach

Learning

- First learning hypotheses
 - Donald O. Hebb
 - 1949 Book titled: The organization of behavior neurophysiological evidence
- Principle

If two connected neurons are simultaneously active, the synaptic efficacy of the connection is reinforced

Hebb's rule

$$\Delta w_{ij} = \eta y_i x_j$$

Learning rule

 μ learning rate

Hebb's algorithm

Initialize the synaptic weights

 $w_{ij}=0$

Calculate synaptic changes

$$\Delta w_{ij} = \eta y_i x_j$$

Update the synaptic weights

$$w_{ij}(t) = w_{ij}(t-1) + \Delta w_{ij}$$

Hebb's rule

x y 1001 100 0100 010 0010 001

Learning example

Limitations

- The Hebb rule allows to learn only orthogonal patterns
- Mixed responses are called interferences

- Some improvements
 - Postsynaptic rule
 - Presynaptic rule

Postsynaptic rule

- Postsynaptic rule
 - Stent-Singer
 - neurophysiologicals that highlighted the mechanism in biological circuits
 - rule
 - increased when the postsynaptic and presynaptic units are active
 - decreased when the postsynaptic unit is active but the presynaptic unit is inactive
 - reduction of the interference phenomenon
 - too many inhibitory synapses
 - it is not found in biological systems but in all the artificial neural networks

Presynaptic rule

Presynaptic rule

- increased when the postsynaptic and presynaptic units are active
- decreased when the presynaptic unit is active but the postynaptic unit is inactive
- It works well when many different and partially overlapping patterns need to be associated with the same pattern

Postsynaptic rule

$$\Delta w_{ij} = \eta (y_i x_j + (x_j - 1)y_i)$$

postsynaptic rule

$$\Delta w_{ij} = \eta \left(y_i x_j + (y_i - 1) x_j \right)$$

presynaptic rule

Hebbian learning and NNs

- NNs based on the Hebb's rule
 - Hopfield network
 - recurrent artificial NN described by Little in 1974
 - popularized by John Hopfield in 1982
 - content-addressable («associative») memory systems with binary threshold nodes
 - They are guaranteed to converge to a local minimum
 - converge to a false pattern (wrong local minimum) rather than the stored pattern (expected local minimum
 - provide a model for understanding human memory

Hebbian learning and NNs

- NNs based on the Hebb's rule
 - Oja's rule
 - Finnish computer scientist Erkki Oja
 - Is a model of how neurons in the brain or in artificial neural networks change connection strength
 - solves stability problems of Hebbian learning
 - generates an algorithm for
 - Principal Component Analysis (PCA)
 - non-linear PCA
 - Independent Component Analaysis (ICA)