

Machine Learning (part II)

Artificial Intelligence and Machine Learning

Angelo Ciaramella

Artificial Intelligence

- Artificial Intelligence (AI)
 - science which aims to develop intelligent machines

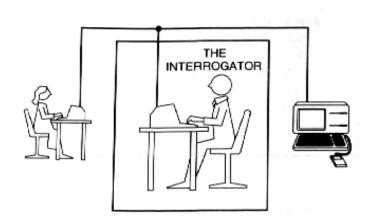
- two main theories
 - Hard Al
 - machines can actually be smart
 - Weak Al
 - machines can behave as if they were intelligent

- Human mind as a program
 - Input
 - data of stimuli
 - the human mind reasons
 - output
 - certain behavior of the body

- Brain
 - parallel hardware
 - consisting of neurons and connections between them
 - this program is executed

Artificial Intelligence founders

- John McCarthy in 1950
 - Every aspect of learning or every other characteristic of intelligence can be described in such a precise way as to allow the construction of a machine capable of simulating it
- Al formally born in 1956
 - New Hampshire conference at Dartmouth College
 - John McCarthy, Marvin Minsky, Claude Shannon e Nathaniel Rochester, Allen Newell e Herbert Simon
 - Logic Theorist (LP)
 - able to demonstrate theorems starting from the principles of mathematics
 - McCarthy introduced the expression Artificial Intelligence


Turing test

- Alan Turing (1950)
 - Computing machinery and intelligence

Imitation Game

- Interaction with a terminal where I can ask questions, I get answers
- on the other side there is either a person or a computer
- after 30 minutes I should be unable to distinguish between a person and a computer

Turing test

- Computer should have the following capabilities
 - Processing of natural language;
 - Representation of knowledge;
 - Automatic reasoning;
 - Machine learning.

Turing's forecasting

"I believe that in about 50 years it will be possible to program computers with a memory of a billion bytes so that they play the game of imitation so well that an ordinary person will have no more than 70% chance of identifying them after 5 minutes of interrogation"

AI periods

- 1943-1956
 - Al starting concepts
 - Neural Networks;
 - chess game programs;
 - theorem demonstrators.

- 1952-1969
 - LISP language
 - Two directions
 - Logic McCarthy (Stanford)
 - No Logic Minsky (MIT)

AI periods

- 1966-1974
 - Some programs were not really competent
 - ELIZA was a purely syntactic translation
 - intractable (combinatorial explosion)
 - Neural networks were inadequate

- 1969-1979
 - Knowledge-based systems
 - Expert Systems
 - Fuzzy Logic

AI periods

- 1980-1988
 - Al becomes an industry
 - Expert Systems
 - Japanese fifth generation project (1981);
 - Companies for the development of Al systems;
 - Funds for research
- **1986**
 - return of neural networks
 - learning algorithm with backward propagation
 - Deep Learning
 - high computing power
 - pre-treined models

IA directions

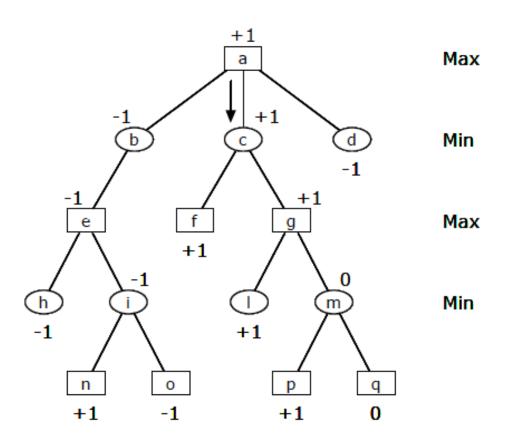
Intelligent Machines

- Programs are built that reach a high level of competence in the knowledge of particular problems
- Engineering approach
- Are not concerned with simulating human reasoning activity, but with emulating it selectively

Cognitive science

- Try to model human behavior and its processes information
- Approach of philosophers, psychologists, linguists, biologists
- The computer is a means of experimentation
- We are still a long way from the construction of the ((intelligent)) machine, so for now we have limited ourselves to simpler and more tractable problems

Chess Game


- In 1997 Deep Blue won against Kasparov
 - Is it intelligence?

- The size of the problem is huge
- We have 35¹⁰⁰ nodes
 - An evaluation function is required
 - We will give a weight to each piece and to the relative position of the pieces

Brute force

- Minmax approach
 - John **von** Neumann

Some domains of AI

- Expert systems (medicine)
- Games
- Aircraft scheduling
- Staff shifts
- Robot for hospitals
- Blind readers
- Translation and understanding of natural language
- Biology and genomics
- Artificial vision
- Web search, online auctions

Hard and Soft Computing

Hard computing

- traditional mathematical methods to solve problems, such as algorithms and mathematical models
- It is based on deterministic and precise calculations and is ideal for solving problems that have well-defined mathematical solutions

Soft Computing

- techniques such as fuzzy logic, neural networks, genetic algorithms, and other heuristic methods to solve problems
- It is based on the idea of approximation and is ideal for solving problems that are difficult or impossible to solve exactly

Machine Learning

- Machine Learning
 - Term coined in 1959 by Arthur Samuel (IBM employee and pioneer in the filed of AI)
 - Formal definition of the algorithms studied in the machine learning field:

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E, Tom M. Mitchell

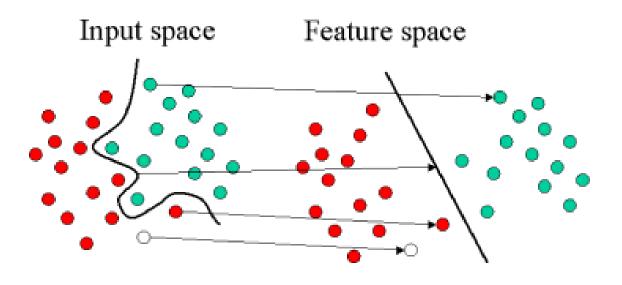
Artificial Intelligence

Machine Learning

Deep Learning

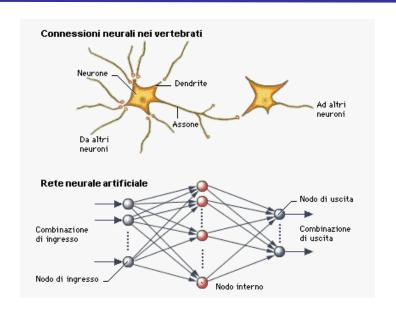
Computational Intelligence

- Computational Intelligencee
 - Set of nature-inspired computational methodologies and approaches to address complex real-world problems
 - The methods used are close to the human's way of reasoning
 - it uses inexact and incomplete knowledge, and it is able to produce control actions in an adaptive way
 - Five main principles
 - Fuzzy Logic
 - Neural Networks
 - Evolutionary computation
 - Learning theory
 - Probabilistic methods



AI Methodologies

- Machine Learning
 - Support Vector Machine
 - Bayesian Nets
 - Statistical learning
- Computational Intelligence
 - Neural Networks
 - Shallow Neural Networks
 - Deep Neural Networks
 - Fuzzy Logic
 - Neuro-Fuzzy
 - Evolutive Approaches
 - Genetic algorithms
 - Swarm optimization
 - Anton Colony
 - Bee Colony


Support Vector Machine

SVM transformation

Neural Networks

Biological and artificial neurons

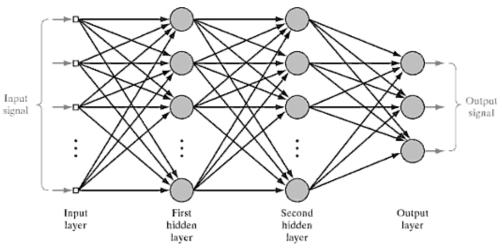
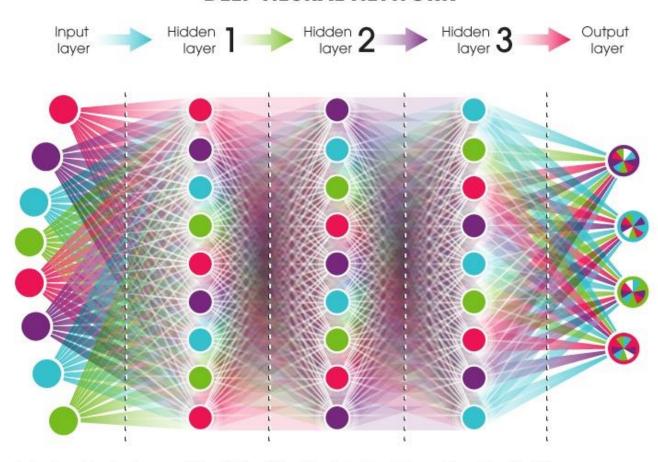
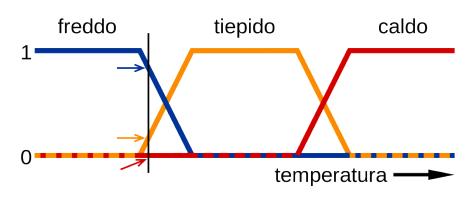
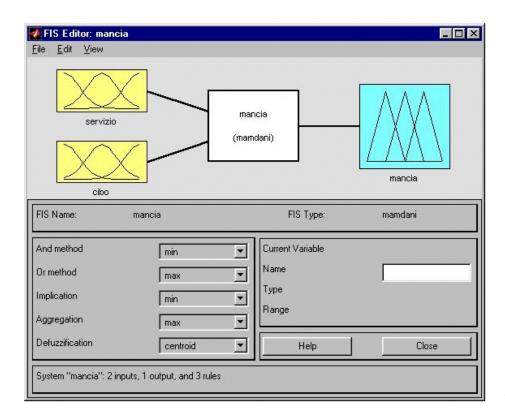



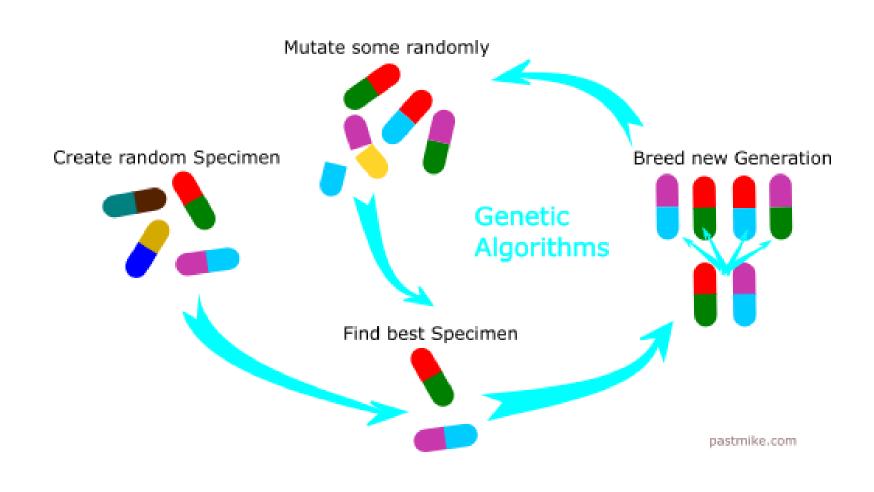
FIGURE 4.1 Architectural graph of a multilayer perceptron with two hidden layers.

Neural Networks

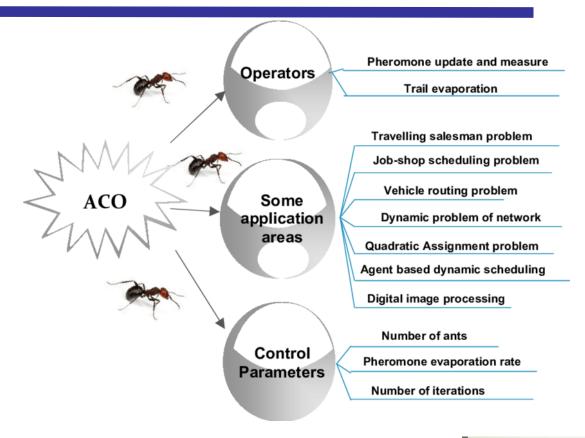

DEEP NEURAL NETWORK

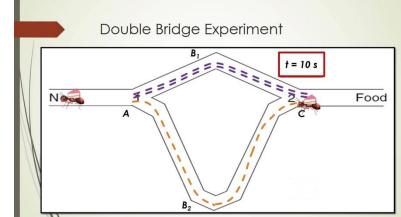

neuralnetworksanddeeplearning.com - Michael Nielsen, Yoshua Bengio, Ian Goodfellow, and Aaron Courville, 2016.

Fuzzy Logic


Linguistic variables

Fuzzy infenrece


Genetic Algorithms


Genetic Algorithms

Ant Colony Optimization

ACO scheme

