

Machine Learning (part II)

Artificial Intelligence and Machine Learning

Angelo Ciaramella

Artificial Intelligence

Artificial Intelligence (AI)

science which aims to develop intelligent machines

- two main theories
 - Hard Al
 - machines can actually be smart
 - Weak Al
 - machines can behave as if they were intelligent

Human mind as a program

- Input
 - data of stimuli
- the human mind reasons
- output
 - certain behavior of the body

- parallel hardware
 - consisting of neurons and connections between them
- this program is executed

Artificial Intelligence founders

John McCarthy in 1950

Every aspect of learning or every other characteristic of intelligence can be described in such a precise way as to allow the construction of a machine capable of simulating it

Al formally born in 1956

- New Hampshire conference at Dartmouth College
 - John McCarthy, Marvin Minsky, Claude Shannon e Nathaniel Rochester, Allen Newell e Herbert Simon
 - Logic Theorist (LP)
 - able to demonstrate theorems starting from the principles of mathematics
 - McCarthy introduced the expression Artificial Intelligence

- Alan Turing (1950)
 - Computing machinery and intelligence

Imitation Game

- Interaction with a terminal where I can ask questions, I get answers
- on the other side there is either a person or a computer
- after 30 minutes I should be unable to distinguish between a person and a computer

Turing test

Computer should have the following capabilities

- Processing of natural language;
- Representation of knowledge;
- Automatic reasoning;
- Machine learning.

"I believe that in about 50 years it will be possible to program computers with a memory of a billion bytes so that they play the game of imitation so well that an ordinary person will have no more than 70% chance of identifying them after 5 minutes of interrogation"

AI periods

1943-1956

- Al starting concepts
 - Neural Networks;
 - chess game programs;
 - theorem demonstrators.

1952-1969

- LISP language
- Two directions
 - Logic McCarthy (Stanford)
 - No Logic Minsky (MIT)

1966-1974

- Some programs were not really competent
 - ELIZA was a purely syntactic translation
 - intractable (combinatorial explosion)
- Neural networks were inadequate

1969-1979

- Knowledge-based systems
- Expert Systems
- Fuzzy Logic

AI periods

1980-1988

- Al becomes an industry
 - Expert Systems
- Japanese fifth generation project (1981);
- Companies for the development of Al systems;
- Funds for research

1986-

- return of neural networks
- learning algorithm with backward propagation
- Deep Learning
 - high computing power
 - pre-treined models

IA directions

Intelligent Machines

- Programs are built that reach a high level of competence in the knowledge of particular problems
- Engineering approach
- Are not concerned with simulating human reasoning activity, but with emulating it selectively

Cognitive science

- Try to model human behavior and its processes information
- Approach of philosophers, psychologists, linguists, biologists
- The computer is a means of experimentation
- We are still a long way from the construction of the ((intelligent)) machine, so for now we have limited ourselves to simpler and more tractable problems

Chess Game

In 1997 Deep Blue won against Kasparov

Is it intelligence?

- We have 35¹⁰⁰ nodes
 - An evaluation function is required
 - We will give a weight to each piece and to the relative position of the pieces

Brute force

- Minmax approach
 - John von Neumann

Some domains of AI

- Expert systems (medicine)
- Games
- Aircraft scheduling
- Staff shifts
- Robot for hospitals
- Blind readers
- Translation and understanding of natural language
- Biology and genomics
- Artificial vision
- Web search, online auctions

Hard and Soft Computing

Hard computing

- traditional mathematical methods to solve problems, such as algorithms and mathematical models
- It is based on deterministic and precise calculations and is ideal for solving problems that have well-defined mathematical solutions

Soft Computing

- techniques such as fuzzy logic, neural networks, genetic algorithms, and other heuristic methods to solve problems
- It is based on the idea of approximation and is ideal for solving problems that are difficult or impossible to solve exactly

Machine Learning

Machine Learning

- Term coined in 1959 by Arthur Samuel (IBM employee and pioneer in the filed of AI)
- Formal definition of the algorithms studied in the machine learning field:

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E, Tom M. Mitchell

Computational Intelligence

Computational Intelligencee

- Set of nature-inspired computational methodologies and approaches to address complex real-world problems
- The methods used are close to the human's way of reasoning
 - it uses inexact and incomplete knowledge, and it is able to produce control actions in an adaptive way
- Five main principles
 - Fuzzy Logic
 - Neural Networks
 - Evolutionary computation
 - Learning theory
 - Probabilistic methods

AI Methodologies

Machine Learning

- Support Vector Machine
- Bayesian Nets
- Statistical learning

Computational Intelligence

- Neural Networks
 - Shallow Neural Networks
 - Deep Neural Networks
- Fuzzy Logic
 - Neuro-Fuzzy
- Evolutive Approaches
 - Genetic algorithms
 - Swarm optimization
 - Anton Colony
 - Bee Colony

Support Vector Machine

SVM transformation

Neural Networks

Biological and artificial neurons

FIGURE 4.1 Architectural graph of a multilayer perceptron with two hidden layers.

Multi-Layer Perceptron

Neural Networks

neuralnetworksanddeeplearning.com - Michael Nielsen, Yoshua Bengio, Ian Goodfellow, and Aaron Courville, 2016.

Deep Neural Network

Fuzzy Logic

Genetic Algorithms

Ant Colony Optimization

