

Machine Learning (part II)

Introduction to the course

Prof. Angelo Ciaramella

The course

12 training credits (CFU)

- Part I (6 CFU)
 - Teacher Prof. Francesco Camastra

Part II (6 CFU)

Teacher – Prof. Angelo Ciaramella

Theoretical part

- Frontal lectures
- Practices
 - theoretical
 - Iaboratory

The course

Examination

- Theoretical/practical project
 - Topic chosen by the student or theachers
 - Term paper
- Oral interview
 - Presentation
 - Project explenation

Lecture timetable

Lecture Timetable

- Monday
 - 11:00 a.m. 01:00 p.m.
- Wednesday
 - 11:00 a.m. 01:00 p.m.

Office hours

- Monday
 - **9:00** a.m. 11:00 a.m.
- "On demand"
 - <mark>–</mark> via e-mail

Objectives of the course

- The course aims to provide the theoretical and practical foundations of Deep Learning methodologies for Artificial Intelligence applications
 - Computational Intelligence
 - Deep Neural Network
 - Unsupervised learning
 - Supervised learning
 - Validation methods

Teaching materials

- Reccommended books
 - Deep Learning, Foundations and Conpcepts
 - C. M. Bishop, H. Bishop, Springer, 2023
 - Available on-line: https://www.bishopbook.com

Deep Learning

- I. Goodfellow, Y. Bengio, A. Courville, MIT Press, 2016
- Available on-line: https://www.deeplearningbook.org

Pattern Recognition and Machine Learning

- J. C. Bishop, Springer, 2006
- Available on-line: https://www.microsoft.com/enus/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf

Neural Networks for Pattern Recognition

J. C. Bishop, Oxford University Press, 1995

- Practical books
 - Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow
 - A. Geron, 2nd edition, O'Reilly, 2019
 - Python notebooks: https://github.com/ageron/handson-ml2

Teaching materials

- Books for further study on the subject
 - Probabilistic Machine Learning: An Introduction
 Kevin P. Murphy, MIT Press, 2022
 - Available on-line: https://probml.github.io/pml-book/book1.html

Understanding Deep Learning

- S. J. D. Prince, 2024
- Available on-line: <u>https://udlbook.github.io/udlbook/</u>
- Python notebooks available

Manuale sulle reti neurali

D. Floreano, C. Mattiussi, II Mulino, 2002

ML - Introduction to the course

Introduction

- Artificial Intelligence and Deep Learning
- Computational Intelligence vs. Machine Learning

Foundations of Neural Networks

- Biological Neuron and Artificial Neuron
- Hebb's rule

Probability and Distributions

- Bayes' theorem
- Information theory
- Standard Distributions
 - Discrete variables
 - Multivariate Gaussian

abus

Hebbian and self-organizing Neural Networks

- Oja's and Sanger's rules
- Neural Network for Principal and Independent Component Analysis
- Neural networks based on competition mechanisms
 - Kohonen's Maps
 - Adaptive Resonance Theory

Supervised Neural Networks

- Single-Layer Networks
- Multi-Layer Perceptron (MLP)
 - Universal Approximation
 - Kolmogorov theorem
 - Back-propagation algorithm
 - MLP vs Radial Basis Functions
 - MLP and Vapnik Chervonenkis dimension

ML - Introduction to the course

- Supervised Neural Networks and optimization algorithms
 - Descending gradient, conjugate gradient, scaled conjugate gradient, Newton method, Levenberg-Marquardt algorithm, constrained optimization
- Pre-processing and feature extraction
 - Whitening
 - Fisher's linear discriminant
 - criteria for selecting features

Learning and generalization

- bias-variance dilemma
- regularization
- NNs committee
- cross-validation
- mixture of experts
- drop-out

Deep Neural Networks

- Convolutive Neural Networks
- Recurrent Neural Networks
 - Echo State Networks
 - Long Short-Term Memory
- Recursive Neural Networks

Transformers

- Attention
- Multimodal Transformers

Graph Nerual Networks

- Neural Message-Passing
- General Graph Neural Networks

Autoencoders

- Deterministic Autoencoders
- Variational Autoencoders
- Diffusion Models
 - Forward encoder
 - Reverse Decoder
 - Score matching

Deep Generative Models

- Deep Belief Networks
- Deep Boltzmann Machines

Sampling Methods

- Need for Sampling
- Basic Sampling Methods
- Markov Chain Monte Carlo Sampling
- Gibbs Sampling

Reinforcement Learning

- Q-Learning
 - Deep Reinforcement Learning

Explainable Al

- Neuro-Symbolic models
 - Neuro-Fuzzy models

Validation methods

- Confusion matrix and indices
- ROC curve
- Statistical significance

Python and Machine Learning frameworks

- Scikit-Learn
- Keras
- TensorFlow
- Notebooks on the e-learning platform

