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Segmentation: Clustering and Classification

In this chapter, we tackle a canonical marketing research problem: finding,
assessing, and predicting customer segments. In previous chapters we’ve seen how
to assess relationships in the data (Chap. 4), compare groups (Chap. 5), and assess
complex multivariate models (Chap. 10). In a real segmentation project, one would
use those methods to ensure that data has appropriate multivariate structure, and
then begin segmentation analysis.

Segmentation is not a well-defined process and analysts vary in their definitions of
segmentation as well as their approaches and philosophy. The model in this chap-
ter demonstrates our approach using basic models in R. As always, this should be
supplemented by readings that we suggest at the end of the chapter.

We start with a warning: we have definite opinions about segmentation and what we
believe are common misunderstandings and poor practices. We hope you’ll be con-
vinced by our views—but even if not, the methods here will be useful to you.

11.1 Segmentation Philosophy

The general goal of market segmentation is to find groups of customers that differ in
important ways associated with product interest, market participation, or response
to marketing efforts. By understanding the differences among groups, a marketer
can make better strategic choices about opportunities, product definition, and posi-
tioning, and can engage in more effective promotion.

11.1.1 The Difficulty of Segmentation

The definition of segmentation above is a textbook description and does not
reflect what is most difficult in a segmentation project: finding actionable business
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outcomes. It is not particularly difficult to find groups within consumer data; indeed,
in this chapter we see several ways to do this, all of which “succeed” according to
one statistical criterion or another. Rather, the difficulty is to ensure that the outcome
is meaningful for a particular business need.

It is outside the range of this book to address the question of business need in gen-
eral. However, we suggest that you ask a few questions along the following lines.
If you were to find segments, what would you do about them? Would anyone in
your organization use them? Why and how? Are the differences found large enough
to be meaningful for your business? Among various solutions you might find, are
there organizational efforts or politics that would make one solution more or less
influential than another?

There is no magic bullet to find the “right” answer. In computer science the no free
lunch theorem says that “for both static and time-dependent optimization problems,
the average performance of any pair of algorithms across all possible problems is
identical” [167]. For segmentation this means that there is no all-purpose method or
algorithm that is a priori preferable to others. This does not mean that the choice of a
method is irrelevant or arbitrary; rather, one cannot necessarily determine in advance
which approach will work best for a novel problem. As a form of optimization,
segmentation is likely to require an iterative approach that successively tests and
improves its answer to a business need.

Segmentation is like slicing a pie, and any pie might be sliced in an infinite number
of ways. Your task as an analyst is to consider the infinity of possible data that
might be gathered, the infinity of possible groupings of that data, and the infinity of
possible business questions that might be addressed. Your goal is to find a solution
within those infinities that represents real differences in the data and that informs
and influences real business decisions.

Statistical methods are only part of the answer. It often happens that a “stronger”
statistical solution poses complexity that makes it impossible to implement in a
business context while a slightly “weaker” solution illuminates the data with a clear
story and fits the business context so well that it can have broad influence.

To maximize chances of finding such a model, we recommend that an analyst
expects—and prepares management to understand—the need to iterate analyses.
A segmentation project is not a matter of “running a segmentation study” or “doing
segmentation analysis on the data.” Rather, it is likely to take multiple rounds of data
collection and analysis to determine the important data that should be collected in
the first place, to refine and test the solutions, and to conduct rounds of interpretation
with business stakeholders to ensure that the results are actionable.

11.1.2 Segmentation as Clustering and Classification

In this chapter, we demonstrate several methods in R that will help you start
with segmentation analysis. We explore two distinct yet related areas of statistics:
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clustering or cluster analysis and classification. These are the primary branches of
what is sometimes called statistical learning, i.e., learning from data through statis-
tical model fitting.

A key distinction in statistical learning is whether the method is supervised or unsu-
pervised. In supervised learning, a model is presented with observations whose out-
come status (dependent variable) is known, with a goal to predict that outcome from
the independent variables. For example, we might use data from previous direct mar-
keting campaigns—with a known outcome of whether each target responded or not,
plus other predictor variables—to fit a model that predicts likelihood of response in
a new campaign. We refer to this process as classification.

In unsupervised learning we do not know the outcome groupings but attempt to
discover them from structure in the data. For instance, we might explore a direct
marketing campaign and ask, “Are there groups that differ in how and when they
respond to offers? If so, what are the characteristics of those groups?” We use the
term clustering for this approach.

Clustering and classification are both useful in segmentation projects. Stakeholders
often view segmentation as discovering groups in the data in order to derive new
insight about customers. This obviously suggests clustering approaches because the
possible customer groups are unknown. Still, classification approaches are also use-
ful in such projects for at least two reasons: there may be outcome variables of inter-
est that are known (such as observed in-market response) that one wishes to predict
from segment membership, and if you use clustering to discover groups you will
probably want to predict (i.e., classify) future responses into those groups. Thus, we
view clustering and classification as complementary approaches.

A topic we do not address is how to determine what data to use for clustering, the
observed basis variables that go into the model. That is primarily a choice based
on business need, strategy, and data availability. Still, you can use the methods here
to evaluate different sets of such variables. If you have a large number of measures
available and need to determine which ones are most important, the variable impor-
tance assessment method we review in Sect. 11.4.3 might assist. Aside from that,
we assume in this chapter that the basis variables have been determined (and we use
the customer relationship data from Chap. 5).

There are hundreds of books, thousands of articles, and scores of R packages for
clustering and classification methods, all of which propose hundreds of approaches
with—as we noted above—no single “best” method. This chapter cannot cover clus-
tering or classification in a comprehensive way, but we can give an introduction that
will get you started, teach you the basics, accelerate your learning, and help you
avoid some traps. As you will see, in most cases the process of fitting such models
in R is extremely similar from model to model.
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11.2 Segmentation Data

We use the segmentation data (object seg.df) from Chap. 5. If you saved that data
in Sect. 5.1.4, you can reload it:
> load("∼/segdf-Rintro-Ch5.RData")
> seg.raw <- seg.df
> seg.df <- seg.raw[ , -7] # remove the known segment assignments

Otherwise, you could download the data set from the book website:
> seg.raw <- read.csv("http://goo.gl/qw303p")
> seg.df <- seg.raw[ , -7] # remove the known segment assignments

As you may recall from Chap. 5, this is a simulated data set with four identified seg-
ments of customers for a subscription product, and contains a few variables that are
similar to data from typical consumer surveys. Each observation has the simulated
respondent’s age, gender, household income, number of kids, home ownership, sub-
scription status, and assigned segment membership. In Chap. 5, we saw how to sim-
ulate this data and how to examine group differences within it. Other data sources
that are often used for segmentation are customer relationship management (CRM)
records, attitudinal surveys, product purchase and usage, and more generally, any
data set with observations about customers.

The original data seg.raw contains “known” segment assignments that have been
provided for the data from some other source (as might occur from some human
coding process). Because our task here is to discover segments, we create a copy
seg.df that omits those assignments (omitting column 7), so we don’t accidentally
include the known values when exploring applying segmentation methods. (Later,
in the classification section, we will use the correct assignments because they are
needed to train the classification models.)

We check the data after loading:
> summary(seg.df)

age gender income kids ownHome ...
Min. :19.26 Female:157 Min. : -5183 Min. :0.00 ownNo :159 ...
1st Qu.:33.01 Male :143 1st Qu.: 39656 1st Qu.:0.00 ownYes:141 ...

We use the subscription segment data in this chapter for two purposes: to exam-
ine clustering methods that find intrinsic groupings (unsupervised learning), and to
show how classification methods learn to predict group membership from known
cases (supervised learning).

11.3 Clustering

We examine four clustering procedures that are illustrative of the hundreds of avail-
able methods. You’ll see that the general procedure for finding and evaluating clus-
ters in R is similar across the methods.
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To begin, we review two distance-based clustering methods, hclust() and
kmeans(). Distance-based methods attempt to find groups that minimize the dis-
tance between members within the group, while maximizing the distance of mem-
bers from other groups. hclust() does this by modeling the data in a tree struc-
ture, while kmeans() uses group centroids (central points).

Then we examine model-based clustering methods, Mclust() and poLCA().
Model-based methods view the data as a mixture of groups sampled from different
distributions, but whose original distribution and group membership has been “lost”
(i.e., is unknown). These methods attempt to model the data such that the observed
variance can be best represented by a small number of groups with specific distri-
bution characteristics such as different means and standard deviations. Mclust()
models the data as a mixture of Gaussian (normal) variables, while poLCA() uses
a latent class model with categorical (nominal) variables.

11.3.1 The Steps of Clustering

Clustering analysis requires two stages: finding a proposed cluster solution and eval-
uating that solution for one’s business needs. For each method we go through the
following steps:

• Transform the data if needed for a particular clustering method; for instance,
some methods require all numeric data (e.g., kmeans(), mclust()) or all
categorical data (e.g., poLCA()).

• Compute a distance matrix if needed; some methods require a precomputed
matrix of similarity in order to group observations (e.g., hclust()) .

• Apply the clustering method and save its result to an object. For some methods
this requires specifying the number (K) of groups desired (e.g., kmeans(),
poLCA()).

• For some methods, further parse the object to obtain a solution with K groups
(e.g., hclust()).

• Examine the solution in the model object with regard to the underlying data,
and consider whether it answers a business question.

As we’ve already argued, the most difficult part of that process is the last step: estab-
lishing whether a proposed statistical solution answers a business need. Ultimately,
a cluster solution is largely just a vector of purported group assignments for each
observation, such as “1, 1, 4, 3, 2, 3, 2, 2, 4, 1, 4 . . ..” It is up to you to figure out
whether that tells a meaningful story for your data.
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11.3.1.1 A Quick Check Function

We recommend that you think hard about how you would know whether the
solution—assignments of observations to groups—that is proposed by a clustering
method is useful for your business problem. Just because some grouping is proposed
by an algorithm does not mean that it will help your business. One way we often ap-
proach this is to write a simple function that summarizes the data and allows quick
inspection of the high-level differences between groups.

A segment inspection function may be complex depending on the business need and
might even include plotting as well as data summarization. For purposes here we use
a simple function that reports the mean by group. We use mean here instead of a
more robust metric such as median because we have several binary variables and
mean() easily shows the mixture proportion for them (i.e., 1.5 means a 50 % mix
of 1 and 2). A very simple function is:

> seg.summ <- function(data, groups) {
+ aggregate(data, list(groups), function(x) mean(as.numeric(x)))
+ }

This function first splits the data by reported group (aggregate(. . ., list
(groups), . . .)). An anonymous function (function(x) . . . ) then converts
all of a group’s data to numeric (as.numeric(x)) and computes its mean().
Here’s an example using the known segments from seg.raw:

> seg.summ(seg.df, seg.raw$Segment)
Group.1 age gender income kids ownHome subscribe

1 Moving up 36.33114 1.30 53090.97 1.914286 1.328571 1.200
2 Suburb mix 39.92815 1.52 55033.82 1.920000 1.480000 1.060
3 Travelers 57.87088 1.50 62213.94 0.000000 1.750000 1.125
4 Urban hip 23.88459 1.60 21681.93 1.100000 1.200000 1.200

This simple function will help us to inspect cluster solutions efficiently. It is not
intended to be a substitute for detailed analysis—and it takes shortcuts such as treat-
ing categorical variables as numbers, which is inadvisable except for analysts who
understand what they’re doing—yet it provides a quick first check of whether there
is something interesting (or uninteresting) occurring in a solution.

With a summary function of this kind we are easily able to answer the following
questions related to the business value of a proposed solution:

• Are there obvious differences in group means?

• Does the differentiation point to some underlying story to tell?

• Do we see immediately odd results such as a mean equal to the value of one
data level?
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Why not just use a standard R function such as by() or aggregate()? There are
several reasons. Writing our own function allows us to minimize typing by providing
a short command. By providing a consistent and simple interface, it reduces risk of
error. And it is extensible; as an analysis proceeds, we might decide to add to the
function, expanding it to report variance metrics or to plot results, without needing
to change how we invoke it.

11.3.2 Hierarchical Clustering: hclust() Basics

Hierarchical clustering is a popular method that groups observations according to
their similarity. The hclust() method is one way to perform this analysis in R.
hclust() is a distance-based algorithm that operates on a dissimilarity matrix, an
N-by-N matrix that reports a metric for the distance between each pair of observa-
tions.

The hierarchical clustering method begins with each observation in its own cluster.
It then successively joins neighboring observations or clusters one at a time accord-
ing to their distances from one another, and continues this until all observations
are linked. This process of repeatedly joining observations and groups is known as
an agglomerative method. Because it is both very popular and exemplary of other
methods, we present hierarchical clustering in more detail than the other clustering
algorithms.

The primary information in hierarchical clustering is the distance between obser-
vations. There are many ways to compute distance, and we start by examining the
best-known method, the Euclidean distance. For two observations (vectors) X and
Y , the Euclidean distance d is:

d =
√

∑(X −Y )2. (11.1)

For single pairs of observations, such as X = {1,2,3} and Y = {2,3,2} we can
compute the distance easily in R:

> c(1,2,3) - c(2,3,2) # vector of differences
[1] -1 -1 1
> sum((c(1,2,3) - c(2,3,2))ˆ2) # the sum of squared differences
[1] 3
> sqrt(sum((c(1,2,3) - c(2,3,2))ˆ2)) # root sum of squares
[1] 1.732051

When there are many pairs, this can be done with the dist() function. Let’s check
it first for the simple X ,Y example, using rbind() to group these vectors as ob-
servations (rows):



306 11 Segmentation: Clustering and Classification

> dist(rbind(c(1,2,3), c(2,3,2)))
1

2 1.732051

The row and column labels tell us that dist() is returning a matrix for observation
1 (column) by observation 2 (row).

A limitation is that Euclidean distance is only defined when observations are nu-
meric. In our data seg.df it is impossible to compute the distance between Male
and Female (a fact many people suspect even before studying statistics). If we did
not care about the factor variables, then we could compute Euclidean distance using
only the numeric columns.

For example, we can select the three numeric columns in seg.df, calculate the dis-
tances, and then look at a matrix for just the first five observations as follows:

> d <- dist(seg.df[, c("age", "income", "kids")])
> as.matrix(d)[1:5, 1:5]

1 2 3 4 5
1 0.000 13936.531 5313.626 31559.178 29870.205
2 13936.531 0.000 8622.906 45495.698 43806.727
3 5313.626 8622.906 0.000 36872.800 35183.828
4 31559.178 45495.698 36872.800 0.000 1688.977
5 29870.205 43806.727 35183.828 1688.977 0.000

As expected, the distance matrix is symmetric, and the distance of an observation
from itself is 0.

For seg.df we cannot assume that factor variables are irrelevant to our cluster
definitions; it is better to use all the data. The daisy() function in the cluster
package [108] works with mixed data types by rescaling the values, so we use that
instead of Euclidean distance:

> library(cluster) # daisy works with mixed data types

> seg.dist <- daisy(seg.df)

We inspect the distances computed by daisy() by coercing the resulting object to
a matrix and selecting the first few rows and columns:

> as.matrix(seg.dist)[1:5, 1:5]
1 2 3 4 5

1 0.0000000 0.2532815 0.2329028 0.2617250 0.4161338
2 0.2532815 0.0000000 0.0679978 0.4129493 0.3014468
3 0.2329028 0.0679978 0.0000000 0.4246012 0.2932957
4 0.2617250 0.4129493 0.4246012 0.0000000 0.2265436
5 0.4161338 0.3014468 0.2932957 0.2265436 0.0000000
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The distances look reasonable (zeroes on the diagonal, symmetric, scaled [0, 1]) so
we proceed to the hierarchical cluster method itself, invoking hclust() on the
dissimilarity matrix:

> seg.hc <- hclust(seg.dist, method="complete")

We use the complete linkage method, which evaluates the distance between every
member when combining observations and groups.

A simple call to plot() will draw the hclust object:

> plot(seg.hc)

The resulting tree for all N = 300 observations of seg.df is shown in
Fig. 11.1.
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Fig. 11.1. Complete dendrogram for the segmentation data, using hclust().

A hierarchical dendrogram is interpreted primarily by height and where observa-
tions are joined. The height represents the dissimilarity between elements that are
joined. At the lowest level of the tree in Fig. 11.1 we see that elements are com-
bined into small groups of 2–10 that are relatively similar, and then those groups are
successively combined with less similar groups moving up the tree. The horizon-
tal ordering of branches is not important; branches could exchange places with no
change in interpretation.

Figure 11.1 is difficult to read, so it is helpful to zoom in on one section of the chart.
We can cut it at a specified location and plot just one branch as follows. We coerce it
to a dendrogram object (as.dendrogram(. . .)), cut it at a certain height (h=. . . ),
and select the resulting branch that we want (. . .$lower[[1]]).

> plot(cut(as.dendrogram(seg.hc), h=0.5)$lower[[1]])
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The result is shown in Fig. 11.2, where we are now able to read the observation la-
bels (which defaults to the row names—usually the row numbers—of observations
in the data frame). Each node at the bottom represents one customer, and the brack-
ets show how each has been grouped progressively with other customers.
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Fig. 11.2. A close up view of the left-most branch from Fig. 11.1.

We can check the similarity of observations by selecting a few rows listed in
Fig. 11.2. Observations 101 and 107 are represented as being quite similar because
they are linked at a very low height, as are observations 278 and 294. On the other
hand, observations 173 and 141 are only joined at the highest level of this branch
and thus should be relatively dissimilar. We can check those directly:

> seg.df[c(101, 107), ] # similar
age gender income kids ownHome subscribe

101 24.73796 Male 18457.85 1 ownNo subYes
107 23.19013 Male 17510.28 1 ownNo subYes
> seg.df[c(278, 294), ] # similar

age gender income kids ownHome subscribe
278 36.23860 Female 46540.88 1 ownNo subYes
294 35.79961 Female 52352.69 1 ownNo subYes
> seg.df[c(173, 141), ] # less similar

age gender income kids ownHome subscribe
173 64.70641 Male 45517.15 0 ownNo subYes
141 25.17703 Female 20125.80 2 ownNo subYes

The first two sets—observations that are neighbors in the dendrogram—are similar
on all variables (age, gender, income, etc.). The third set—observations taken from
widely separated branches—differs substantially on the first four variables.

Finally, we might check one of the goodness-of-fit metrics for a hierarchical clus-
ter solution. One method is the cophenetic correlation coefficient (CPCC), which
assesses how well a dendrogram (in this case seg.hc) matches the true distance
metric (seg.dist) [145]. We use cophenetic() to get the distances from the
dendrogram, and compare it to the dist() metrics with cor():
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> cor(cophenetic(seg.hc), seg.dist)
[1] 0.7682436

CPCC is interpreted similarly to Pearson’s r. In this case, CPCC > 0.7 indicates
a relatively strong fit, meaning that the hierarchical tree represents the distances
between customers well.

11.3.3 Hierarchical Clustering Continued: Groups from hclust()

How do we get specific segment assignments? A dendrogram can be cut into clus-
ters at any height desired, resulting in different numbers of groups. For instance, if
Fig. 11.1 is cut at a height of 0.7, there are K = 2 groups (draw a horizontal line at
0.7 and count how many branches it intersects; each cluster below is a group), while
cutting at height of 0.4 defines K = 7 groups.

Because a dendrogram can be cut at any point, the analyst must specify the number
of groups desired. We can see where the dendrogram would be cut by overlaying
its plot() with rect.hclust(), specifying the number of groups we want
(k=. . . ):

> plot(seg.hc)
> rect.hclust(seg.hc, k=4, border="red")

The K = 4 solution is shown in Fig. 11.3.
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Fig. 11.3. The result of cutting Fig. 11.1 into K = 4 groups.
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We obtain the assignment vector for observations using cutree():

> seg.hc.segment <- cutree(seg.hc, k=4) # membership vector for 4 groups
> table(seg.hc.segment)
seg.hc.segment
1 2 3 4

124 136 18 22

We see that groups 1 and 2 dominate the assignment. Note that the class la-
bels (1, 2, 3, 4) are in arbitrary order and are not meaningful in themselves.
seg.hc.segment is the vector of group assignments.

We use our custom summary function seg.summ(), defined above, to inspect the
variables in seg.df with reference to the four clusters:

> seg.summ(seg.df, seg.hc.segment)
Group.1 age gender income kids ownHome subscribe

1 1 40.78456 2.000000 49454.08 1.314516 1.467742 1
2 2 42.03492 1.000000 53759.62 1.235294 1.477941 1
3 3 44.31194 1.388889 52628.42 1.388889 2.000000 2
4 4 35.82935 1.545455 40456.14 1.136364 1.000000 2

We see that groups 1 and 2 are distinct from 3 and 4 due to subscription sta-
tus. Among those who do not subscribe, group 1 is all male (gender=2 as in
levels(seg.df$gender)) while group 1 is all female. Subscribers are differ-
entiated into those who own a home (group 3) or not (group 4).

Is this interesting from a business point of view? Probably not. Imagine describing
the results to a set of executives: “Our advanced hierarchical analysis in R examined
consumers who don’t yet subscribe and found two segments to target! The segments
are known as ‘Men’ and ‘Women.”’ Such insight is unlikely to win the analyst a
promotion.

We confirm this with a quick plot of gender by subscribe with all of the obser-
vations colored by segment membership. To do this, we use a trick: we convert the
factor variables to numeric, and call the jitter() function to add a bit of noise
and prevent all the cases from being plotted at the same positions (namely at exactly
four points: (1,1), (1,2), (2,1), and (2,2)). We color the points by segment with
col=seg.hc.segment, and label the axes with more meaningful labels:

> plot(jitter(as.numeric(seg.df$gender)) ∼
+ jitter(as.numeric(seg.df$subscribe)),
+ col=seg.hc.segment, yaxt="n", xaxt="n", ylab="", xlab="")
> axis(1, at=c(1, 2), labels=c("Subscribe: No", "Subscribe: Yes"))
> axis(2, at=c(1, 2), labels=levels(seg.df$gender))

The resulting plot is shown in Fig. 11.4, where we see clearly that the non-
subscribers are broken into two segments (colored red and black) that are perfectly
correlated with gender. We should point out that such a plot is a quick hack, which
we suggest only for rapid inspection and debugging purposes.
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Fig. 11.4. Plotting the 4-segment solution from hclust() by gender and subscription sta-
tus, with color representing segment membership. We see the uninteresting result that non-

subscribers are simply divided into two segments purely on the basis of gender.

Why did hclust() find a result that is so uninteresting? That may be answered
in several ways. For one thing, machine learning techniques often take the path of
least resistance and serve up obvious results. In this specific case, the scaling in
daisy() rescales variables to [0,1] and this will make two-category factors (gen-
der, subscription status, home ownership) more influential. Overall, this demon-
strates why you should expect to try several methods and iterate in order to find
something useful.

11.3.4 Mean-Based Clustering: kmeans()

K-means clustering attempts to find groups that are most compact, in terms of the
mean sum-of-squares deviation of each observation from the multivariate center
(centroid) of its assigned group. Like hierarchical clustering, k-means is a very pop-
ular approach.

Because it explicitly computes a mean deviation, k-means clustering relies on Eu-
clidean distance. Thus it is only appropriate for numeric data or data that can be
reasonably coerced to numeric. In our seg.df data, we have a mix of numeric
and binary factors. Unlike higher-order categorical variables, binary factors can be
coerced to numeric with no alteration of meaning.

Although it is not optimal to cluster binary values with k-means, given that we have
a mixture of binary and numeric data, we might attempt it. Our first step is to create
a variant of seg.df that is recoded to numeric. We make a copy of seg.df and
use ifelse() to recode the binary factors:

> seg.df.num <- seg.df
> seg.df.num$gender <- ifelse(seg.df$gender=="Male", 0, 1)
> seg.df.num$ownHome <- ifelse(seg.df$ownHome=="ownNo", 0, 1)
> seg.df.num$subscribe <- ifelse(seg.df$subscribe=="subNo", 0, 1)
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> summary(seg.df.num)
age gender income kids ownHome

Min. :19.26 Min. :0.0000 Min. : -5183 Min. :0.00 Min. :0.00
1st Qu.:33.01 1st Qu.:0.0000 1st Qu.: 39656 1st Qu.:0.00 1st Qu.:0.00
Median :39.49 Median :0.0000 Median : 52014 Median :1.00 Median :0.00
...

There are several ways to recode data, but ifelse() is simple and explicit for
binary data.

We now run the kmeans() algorithm, which specifically requires specifying the
number of clusters to find. We ask for four clusters with centers=4:

> set.seed(96743)
> seg.k <- kmeans(seg.df.num, centers=4)

We use our custom function seg.summ() to do a quick check of the data by pro-
posed group, where cluster assignments are found in the $cluster vector inside
the seg.k model:

> seg.summ(seg.df, seg.k$cluster)
Group.1 age gender income kids ownHome subscribe

1 1 56.37245 1.428571 92287.07 0.4285714 1.857143 1.142857
2 2 29.58704 1.571429 21631.79 1.0634921 1.301587 1.158730
3 3 44.42051 1.452632 64703.76 1.2947368 1.421053 1.073684
4 4 42.08381 1.454545 48208.86 1.5041322 1.528926 1.165289

Unlike with hclust()we now see some interesting differences; the groups appear
to vary by age, gender, kids, income, and home ownership. For example, we can
visually check the distribution of income according to segment (which kmeans()
stored in seg.k$cluster) using boxplot():

> boxplot(seg.df.num$income ∼ seg.k$cluster, ylab="Income", xlab="Cluster")

The result is Fig. 11.5, which shows substantial differences in income by segment.
Note that in clustering models, the group labels are in arbitrary order, so don’t worry
if your solution shows the same pattern with different labels.

We visualize the clusters by plotting them against a dimensional plot.
clusplot() will perform dimensional reduction with principal components or
multidimensional scaling as the data warrant, and then plot the observations with
cluster membership identified (see Chap. 8 to review principal component analysis
and plotting.) We use clusplot from the cluster package with arguments to
color the groups, shade the ellipses for group membership, label only the groups
(not the individual points) with labels=4, and omit distance lines between groups
(lines=0):

> library(cluster)
> clusplot(seg.df, seg.k$cluster, color=TRUE, shade=TRUE,
+ labels=4, lines=0, main="K-means cluster plot")
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Fig. 11.5. Boxplot of income by cluster
as found with kmeans().

The code produces the plot in Fig. 11.6, which plots cluster assignment by color and
ellipses against the first two principal components of the predictors (see Sect. 8.2.2).
Groups 3 and 4 are largely overlapping (in this dimensional reduction) while group
1 and especially group 2 are modestly differentiated.
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These two components explain 48.49 % of the point variability.
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Fig. 11.6. Cluster plot created with
clusplot() for the four group so-
lution from kmeans(). This shows
the observations on a multidimensional
scaling plot with group membership
identified by the ellipses.

Overall, this is a far more interesting cluster solution for our segmentation data than
the hclust() proposal. The groups here are clearly differentiated on key variables
such as age and income. With this information, an analyst might cross-reference the
group membership with key variables (as we did using our seg.summ() function
and then look at the relative differentiation of the groups (as in Fig. 11.6).
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This may suggest a business strategy. In the present case, for instance, we see
that group 1 is modestly well differentiated, and has the highest average income.
That may make it a good target for a potential campaign. Many other strategies
are possible, too; the key point is that the analysis provides interesting options to
consider.

A limitation of k-means analysis is that it requires specifying the number of clusters,
and it can be difficult to determine whether one solution is better than another. If we
were to use k-means for the present problem, we would repeat the analysis for k = 3,
4, 5, and so forth, and determine which solution gives the most useful result for our
business goals.

One might wonder whether the algorithm itself can suggest how many clusters are
in the data. Yes! To see that, we turn next to model-based clustering.

11.3.5 Model-Based Clustering: Mclust()

The key idea for model-based clustering is that observations come from groups
with different statistical distributions (such as different means and variances). The
algorithms try to find the best set of such underlying distributions to explain the
observed data. We use the mclust package [53, 54] to demonstrate this.

Such models are also known as “mixture models” because it is assumed that the
data reflect a mixture of observations drawn from different populations, although we
don’t know which population each observation was drawn from. We are trying to
estimate the underlying population parameters and the mixture proportion. mclust
models such clusters as being drawn from a mixture of normal (also known as Gaus-
sian) distributions.

As you might guess, because mclustmodels data with normal distributions, it uses
only numeric data. We use the numeric data frame seg.df.num that we adapted
for kmeans() in Sect. 11.3.4; see that section for the code if needed. The model is
estimated with Mclust() (note the capital letter for the fitting function, as opposed
to the package name):

> library(mclust)
> seg.mc <- Mclust(seg.df.num)
> summary(seg.mc)
----------------------------------------------------
Gaussian finite mixture model fitted by EM algorithm
----------------------------------------------------

Mclust EEV (ellipsoidal, equal volume and shape) model with 3 components:

log.likelihood n df BIC ICL
-5256.222 300 71 -10917.41 -10955.48

Clustering table:
1 2 3

111 115 74
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