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Overview
• Python tools for machine learning
• First application

• Unsupervised learning
• K-Means

• Agglomerative Clustering and DBSCAN

• Principal Component Analysis
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Python Tools
• Python combines the power of general-purpose programming

languages with the ease of use of domain-specific scripting
languages

• Python has libraries that provide data scientists with a large array
of general- and special-purpose functionality

• Moreover Python allows to interact directly with the code using a
Jupyter Notebook
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Scikit-learn
• scikit-learn is an open source project that contains a number of

state-of-the-art machine learning algorithms

• scikit-learn is the most prominent Python library for machine
learning

• scikit-learn works well with a number of other scientific Python
tools
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Scikit-learn
• scikit-learn is built on top of the NumPy and SciPy scientific

Python libraries

• In addition to NumPy and SciPy, pandas and matplotlib libraries
will be also used
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Jupyter Notebook
• The Jupyter Notebook is an interactive environment for

running code in the browser

• It is a great tool for exploratory data analysis and is widely used
by data scientists

• The Jupyter Notebook makes it easy to incorporate code, text,
and images
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Jupyter Notebook
• https://colab.research.google.com

• Create an account or log in

• Open the first notebook (from local o Github)

• https://github.com/amueller/introduction_to_ml_with_python

https://colab.research.google.com/
https://github.com/amueller/introduction_to_ml_with_python
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Jupyter Notebook
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NumPy
• NumPy is one of Python's fundamental packages for scientific computing
(multidimensional arrays, high-level mathematical functions, etc.)

• In scikit-learn, the NumPy array is the fundamental data structure since it takes in
data in the form of NumPy arrays

• The core functionality of NumPy is the ndarray class, a multidimensional (n-
dimensional) array of elements of the same type

• Notebook...
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NumPy
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SciPy
• SciPy is a collection of functions for scientific computing in

Python (advanced linear algebra routines, mathematical function
optimization, signal processing, special mathematical functions,
etc)

• scikit-learn for implementing its algorithms uses scipy.sparse
(sparse matrices, that contains mostly zeros)

• Notebook...
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SciPy
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Matplotlib
• matplotlib is the primary scientific plotting library in Python for

making visualizations such as line charts, histograms, scatter plots

• When working inside the Jupyter Notebook, it is possible to show
figures directly in the browser

• Notebook...
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Matplotlib
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Pandas
• Pandas is a Python library for data analysis built around a data

structure called the DataFrame

• A pandas DataFrame is a table, similar to an Excel spreadsheet

• Pandas allows each column to have a separate type (integers,
dates, floating-point numbers, and strings)

• Notebook...
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Pandas
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mglearn
• mglearn is a library of utility functions for plotting and data 

loading

• pip install mglearn

• import mglearn

• Notebook...
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First application
• A simple machine learning application for distinguishing the species of some iris flowers

• For each iris some measurement have been collected: the length and width of the petals
and the length and width of the sepals

• Some irises have been previously classified by an expert botanist as belonging to the
species setosa, versicolor, or virginica

• The goal is to build a machine learning model that can learn from the measurements whose
species is known, in order to predict the species for a new iris
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First application
• Because we have measurements for which we know the correct

species of iris, this is a supervised learning problem
(classification)

• Every iris in the dataset (data point) belongs to one of three
classes

• For a particular data point, the species it belongs to is called its
label
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Data
• The data we will use for this example is the Iris dataset

• It is included in scikit-learn in the datasets module

• It is possible to load it by calling the load_iris function

• Notebook...
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Data



www.meim.uniparthenope.it

Data
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Data
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Training and Test
• The goal is to build a machine learning model from this data that

can predict the species of iris for a new set of measurements

• To assess the model’s performance, new data for which we have
labels is presented to the model

• To this aim, the dataset is splitted in two parts: one part to train
the model (training set) and the other part to assess its
performance (test set)



www.meim.uniparthenope.it

Training and Test
• scikit-learn contains a function that shuffles the dataset and

splits it

• The train_test_split function extracts 75% of the rows in the data
as a training set and the remaining 25% of the data as a test set

• Notebook...
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Training and Test



www.meim.uniparthenope.it

Inspect the data
Scatter plot



www.meim.uniparthenope.it

First ML model
• All machine learning models in scikit-learn are implemented in

their own classes, which are called Estimator classes

• The knn object encapsulates the algorithm that will be used to
build the model from the training data and the algorithm to make
predictions on new data points
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First ML model
• To build the model on the training set, we call the fit method of

the knn object, which takes as arguments
• NumPy array X_train containing the training data
• NumPy array y_train of the corresponding training labels

• Notebook...
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First ML model
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First ML model
• We can now make predictions using this model on new data for

which we might not know the correct labels
• Imagine we found an iris in the wild with a sepal length of 5 cm,

a sepal width of 2.9 cm, a petal length of 1 cm, and a petal
width of 0.2 cm
• What species of iris would this be? We can put this data into a

NumPy array and call the predict method of the knn object

• Notebook...
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First ML model
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First ML model
• The test set, created earlier, was not used to build the model,

but we do know what the correct species is for each iris in the
test set
• Therefore, we can make a prediction for each iris in the test data

and compare it against its label (the known species)
• We can measure how well the model works by computing the

accuracy, which is the fraction of flowers for which the right
species was predicted

• Notebook...
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First ML model
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Summary
• We formulated the task of predicting which species of iris a

particular flower belongs to by using physical measurements of
the flower
• We used a dataset of measurements that was annotated by an

expert with the correct species to build our model, making this a
supervised learning task
• The possible species are called classes in the classification

problem, and the species of a single iris is called its label
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Summary
• The Iris dataset consists of two NumPy arrays: one containing the
data, which is referred to as X in scikit-learn, and one containing the
correct or desired outputs, which is called y
• We split our dataset into a training set, to build our model, and a test
set, to evaluate how well our model will generalize to new, previously
unseen data

• We built the model by calling the fit method, passing the training
data (X_train) and training outputs (y_train) as parameters

• We evaluated the model using the score method, which computes the
accuracy of the model
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Overview
• Python tools for machine learning
• First application

• Unsupervised learning
• K-Means

• Agglomerative Clsutering and DBSCAN

• Principal Component Analysis
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Unsupervised learning
• Unsupervised learning embraces all kinds of machine learning

where there is no known output, no teacher to instruct the
learning algorithm
• In unsupervised learning, the learning algorithm is just shown the

input data and asked to extract knowledge from this data
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Unsupervised learning: types
• Two kinds of unsupervised learning:
• transformations of the dataset
• clustering

• Unsupervised transformations of a dataset are algorithms that
create a new representation of the data which might be easier
for humans or other machine learning algorithms to understand

• Clustering algorithms, on the other hand, partition data into
distinct groups of similar items
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Clustering: example
• Consider the example of uploading photos to a social media site

• In order to organize your pictures, the site might want to group
together pictures that show the same person

• The site doesn’t know which pictures show whom, and it doesn’t
know how many different people appear in your photo collection

• A possible approach would be to extract all the faces and divide
them into groups of faces that look similar
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Clustering: challenges
• A major challenge in unsupervised learning is evaluating whether the

algorithm learned something useful

• Unsupervised learning algorithms are usually applied to data that
does not contain any label information

• We don’t know what the right output should be

• Unsupervised algorithms are used often in an exploratory setting,
when a data scientist wants to understand the data better
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Clustering
• clustering is the task of partitioning the dataset into groups,

called clusters

• The goal is to split up the data in such a way that points within a
single cluster are very similar and points in different clusters are
different

• Similarly to classification algorithms, clustering algorithms assign
(or predict) a number to each data point, indicating which cluster
a particular point belongs to
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K-Means
• k-means clustering is one of the simplest and most commonly

used clustering algorithms
• It tries to find cluster centers that are representative of certain

group of the data
• The algorithm alternates between two steps: assigning each data

point to the closest cluster center, and then setting each cluster
center as the mean of the data points that are assigned to it
• The algorithm is finished when the assignment of instances to

clusters no longer changes
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K-Means
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K-Means
• Cluster centers are shown as triangles
• Data points are shown as circles
• Colors indicate cluster membership
• We are looking for three clusters, so the algorithm was initialized

by declaring three data points randomly as cluster centers
• First, each data point is assigned to the closest cluster center
• Next, the cluster centers are updated to be the mean of the

assigned points (the process is repeated two more times)
• After the third iteration, the assignment of points to cluster

centers remained unchanged, so the algorithm stops
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K-Means
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K-Means with scikit-learn
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K-Means with scikit-learn
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K-Means with scikit-learn
• You can also assign cluster labels to new points, using the

predict method
• Each new point is assigned to the closest cluster center when

predicting, but the existing model is not changed
• Running predict on the training set returns the same result as

labels_
• Clustering is somewhat similar to classification, in that each item

gets a label
• However, there is no ground truth, and consequently the labels

themselves have no a priori meaning
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K-Means with scikit-learn
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K-Means with scikit-learn
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K-Means with scikit-learn
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K-Means with scikit-learn
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K-Means failure cases
• Even if you know the “right” number of clusters for a given

dataset, k-means might not always be able to recover them

• Each cluster is defined solely by its center, which means that each
cluster is a convex shape

• k-means also assumes that all clusters have the same “diameter”
in some sense: it always draws the boundary between clusters to
be exactly in the middle between the cluster centers
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K-Means failure cases
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K-Means failure cases
• k-means also assumes that all directions are equally important

for each cluster

• k-means only considers the distance to the nearest cluster
center, it can’t handle groups that are stretched toward the
diagonal

• k-means also performs poorly if the clusters have more complex
shapes
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K-Means failure cases
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K-Means failure cases
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K-Means failure cases
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K-Means failure cases
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• Principal Component Analysis
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Agglomerative Clustering 
• The algorithm starts by declaring each point its own cluster

• The two most similar clusters are merged until only the specified
number of clusters are left

• There are several linkage criteria
• ward picks the two clusters to merge such that the variance within all

clusters increases the least
• average linkage merges the two clusters that have the smallest
average distance between all their points
• complete linkage merges the two clusters that have the smallest
maximum distance between their points
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Agglomerative Clustering 
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Agglomerative Clustering 
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Agglomerative Clustering 
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Agglomerative Clustering: dendogram
• Another tool to visualize hierarchical clustering is called a

dendrogram (scikit-learn currently does not draw dendrograms)

• SciPy provides a function that takes a data array X and
computes a linkage array, which encodes hierarchical cluster
similarities

• We can then feed this linkage array into the scipy dendrogram
function to plot the dendrogram
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Agglomerative Clustering: dendogram
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Agglomerative Clustering: dendogram
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DBSCAN
• DBSCAN stands for “density-based spatial clustering of applications
with noise”

• DBSCAN does not require the user to set the number of clusters a
priori

• DBSCAN works by identifying points that are in “crowded” regions
of the feature space, where many data points are close together

• If there are at least min_samples many data points within a distance
of eps to a given data point, that data point is classified as a core
sample
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DBSCAN
• Clusterings obtained

with different
parameters
• Points in clusters are
solid, while noise
points are in white
• Core samples are
large markers, while
boundary points are
smaller markers
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DBSCAN
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DBSCAN
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Evaluating clustering with ground truth:
adjusted rand index
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Evaluating clustering without ground truth:
Silhouette
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Preprocessing
• A common practice is to adjust the features so that the data

representation is more suitable

• Often this is a simple per-feature rescaling and shift of the data

• A synthetic two-class classification dataset with two features

• The first feature (the x-axis value) is between 10 and 15 while the
second feature (the y-axis value) is between around 1 and 9
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Preprocessing
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Dimensionality reduction
• Transforming data using unsupervised learning can have many

motivations

• The most common motivations are visualization, compressing
the data, and finding a representation that is more informative
for further processing

• One of the simplest and most widely used algorithms is Principal
Component Analysis
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Principal Component Analysis
• Principal component analysis is a method that rotates the

dataset in a way such that the rotated features are statistically
uncorrelated

• This rotation is often followed by selecting only a subset of the
new features, according to how important they are for
explaining the data
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Principal Component Analysis
• The first plot (top left) shows the

original data points
• The algorithm proceeds by first finding

the direction of maximum variance,
that contains most of the information
• The second plot (top right) shows the

same data, but now rotated so that
the first principal component aligns
with the x-axis and the second
principal component aligns with the y-
axis
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Principal Component Analysis
• One of the most common applications of PCA is visualizing high-

dimensional data

• It is difficult to create scatter plots of data that has more than
two features

• There is an even simpler visualization, that is computing
histogram of each feature for each class
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Principal Component Analysis
• Execute cell: Different Kinds of Preprocessing

• Execute cell: Applying PCA to the cancer dataset for
visualization
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Principal Component Analysis
• Histogram for each of the features,

counting how often a data point
appears with a feature in a certain
range

• Each plot overlays two histograms,
one for all of the points in the
benign class and one for all the
points in the malignant class
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Principal Component Analysis
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Principal Component Analysis
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Principal Component Analysis
• It is important to note that PCA is an unsupervised method, and

does not use any class information when finding the rotation

• It simply looks at the correlations in the data

• A drawback of PCA is that the two axes in the plot are often not
very easy to interpret

• The principal components correspond to directions in the
original data, so they are combinations of the original features
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Try different datasets...

https://scikit-learn.org/stable/modules/classes.html?highlight=dataset#module-sklearn.datasets

https://scikit-learn.org/stable/modules/classes.html?highlight=dataset

