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Data dimensionality

e The number of features in a dataset determines its data
dimensionality

\—Y—}

Dimensionality of data

l—'—l
2D Data
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Unsupervised learning: Dimensionality reduction

The data used in machine learning applications often have many
variables (features)

* If your dataset has two features, then it is two-dimensional data. If it has three |
features, then it has three features and so on |

« One aims at using as many features as possible to capture the
characteristics of her data, but she also doesn't want the dimension to

be too high 1

* Most of these dimensions may or may not matter in the context of our
application with the questions we are asking |

* Reducing such high dimensions to a more manageable set of related |
and useful variables improves the performance and accuracy of our
analysis
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Curse of Dimensionality

o Data. in only one dimension is S R—— R p—
relatively packed

* Adding a dimension “stretch” the D10-aregows . b12D-16regons 050 64 regons
points across that dimension, making . oo .
them further apart ol oot s

« Adding more dimensions will make " . T S !
the points further apart — high ; o-io-P0 SN
dimensional data is extremely sparse |, = cocemes e g T

« Distance measure becomes

meaningless — due to equidistance Analysis results degrade
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Dimensionality reduction

* Data visualization is a further
significant motivation behind
dimensionality reduction
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Goals of data dimensionality reduction

* Preserve as much significant structure or information of the
data present in the high-dimensional data as possible in the
low-dimensional representation

* Increase the interpretability of the data in the lower
dimension

* Minimizing information loss of data due to dimensionality
reduction
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Principal Component Analysis
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Principal Component Analysis (PCA)

* An unsupervised, deterministic algorithm used for feature
extraction as well as visualization

* Applies a linear dimensionality reduction technique where
the focus is on keeping the dissimilar points far apart in a lower-
dimensional space

* Transforms the original data to a new data by preserving their
variance using eigenvalues

* Qutliers impact PCA
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Principal component analysis (PCA)

* PCA is a mathematical technique for reducing the dimensionality of data

* Goal
* To reduce high-dimensional to low-dimensional data in some way
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Principal component analysis (PCA)

e Let's draw a horizontal line on the X axis

* Projection line

* Project each data point to its closest spot on the projection line

projecting points to y=0 projected to y=0

T T T T T T T T
2t 3 2t

ity
| | | “I |
0} 0}
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-2 . -2
-2 -1 0 1 2 -2 -1 0 1 2

* That's the wrong way to proceed!
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Principal component analysis (PCA)
« Here is how PCA proceeds

rotated projected points

. ; rojecting points rojected points n ]
II|ne of rrlwax varllance ‘ Proj . 9p . : ; . proj : P - T 3 ' I
Sl | 2t - 2t . 5L i
1L i 1t - 1t . 1t ]
5 5 0} cosmseEEEEETIINIIT D |

ol | L i L ]
_1 | 4

-1k 4 -1F R -1F b
-2} i
-2k 4 -2k = -2h 1 I L I 3 _I2 _I]_ 6 :i_ 2‘ é

-2 -2 -2 -1 0 1 2

www.meim.uniparthenope.it




iV

MASTER IN ENTREPRENEURSHIP
INNOVATION MANAGEMENT
IN coLLaBorATION witH MIT SLOAN

ST
¢\ UNIVERSITA DEGLI STUDI DI NAPOLI

./ PARTHENOPE

Principal Component Analysis

Finds a new coordinate system such that
few new axes captures the greatest variance

Define lower-dimensional space for data

Note

 Oiriginal dimensions have a natural
Interpretation

* E.g., Income, age, occupation, etc
* New dimensions more difficult to
interpret!
* In general, there are as many principal

Second principal component

First principal component

components as original features
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PCA algorithm main steps . -.. | e

« Starts by first finding the direction of maximum variance
(Component 1)

feature 2

e This is the direction (or vector) in the data that contains most of

Second principal component
o

. . . ) ] . _al Componenbl’yr —2r
the information, or in other words, the direction along which o}
the features are most correlated with each other l |-
« Next, it finds the direction that contains the most information = wwe © rstomopal component
while being orthogonal to the first direction (Component 2) Trgnsformed data w/ second companent dropped
® Intwo dimensions, there is only one possible orientation, but of
in higher-dimensional spaces there would be (infinitely) many 2 §
orthogonal directions O e —
* The directions found using this process are called principal
components, as they are the main directions of variance in

. . . . . . .
-8 -6 -4 =2 0 2 4 6 8
First principal component
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Why Manifold learning ?
* Many dimensionality reduction algorithms work by modeling the manifold on
which the training instances lie (manifold learning)

* It relies on the manifold assumption stating that most real-world high-
dimensional datasets lie close to a much lower dimensional manifold
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Manifold learning

« PCA is often a good first approach for transforming your data so that you
might be able to visualize it using a scatter plot

 There is a class of algorithms for visualization called manifold learning
algorithms that allow for much more complex mappings, and often provide
better visualizations

* A particularly useful one is the t-SNE algorithm
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t-Distributed Stochastic Neighbor Embedding(t-SNE)

* An unsupervised, randomized algorithm, used only for visualization

* Applies a non-linear dimensionality reduction technique where the focus is on
keeping the very similar data points close together in lower-dimensional
space

* Preserves the local structure of the data using student t-distribution to
compute the similarity between two points in lower-dimensional space

« Used for visualization purposes because it exploits the local relationships between
datapoints and can subsequently capture nonlinear structures in the data

 Qutliers do not impact t-SNE
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t-SNE algorithm

Manifold learning algorithms are mainly aimed at visualization
* rarely used for data transformation

« Manifold learning can be useful for exploratory data analysis but is rarely used if the final goal
is supervised learning

* The idea behind t-SNE is to find a two-dimensional representation of the data that preserves
the distances between points as best as possible

* it starts with a random two-dimensional representation for each data point

* then tries to make points that are close in the original feature space closer, and points that are far apart in the
original feature space farther apart

* t-SNE puts more emphasis on points that are close by, rather than preserving distances
between far-apart points

* it tries to preserve the information indicating which points are neighbors to each other
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t-SNE main steps

* The t-SNE algorithm can be roughly summarized as two steps:

1. Create a probability distribution capturing the relationships
between points in the high dimensional space

2. Find a low dimensional space that resembles the probability
distribution as well as possible
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Visualization example

Let's apply the t-SNE manifold learning
algorithm on a dataset of handwritten digits

PIRTE4EIED
FI1E D

Example images from handwritten digit dataset

Each data point is an 8x8 gray-scale image of a
handwritten digit between 0 and 1

Let's use PCA to visualize the data reduced to
two dimensions

« We plot the first two principal components, and color
each dot by its class

Let's also use t-SNE
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