DIGITAL TECH
 High Performance Computing

Lesson 1: Basic scientific computing tools

NEIM

Lesson 1: Basic scientific computing tools

1. Vectors (arrays)
2. Matrices
3. Linear systems

Vectors: preliminaries

Different perspective:

- Physics: length, direction (pointing from A to B)
$v \quad \longrightarrow$
- Mathematician: couple (ordered pairs, tuples) of coordinates between commas

$$
\begin{gathered}
v=\left(v_{1}, v_{2}\right) \quad \text { couple, } \quad \text { two-dimensional vector } \\
w=\left(w_{1}, w_{2}, \ldots, w_{t}\right) \quad \text { tuple, } \quad t \text {-dimensional vector }
\end{gathered}
$$

- Computer science: list of numbers. Row and column vectors

$$
w=[5,3,6,-4, \pi] \quad v=\left[\begin{array}{l}
6 \\
2 \\
4
\end{array}\right]
$$

v_{1}, v_{2}, \ldots are called components

Vectors: preliminaries (2)

Let be $v=\left[v_{1}, v_{2}, \ldots, v_{n}\right] \quad w=\left[w_{1}, w_{2}, \ldots, w_{n}\right]$ vectors and $k \in \mathbf{R}$ a real number (scalar)

- norm (length) $\quad\|v\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}$
- sum

$$
v+w=\left[v_{1}+w_{1}, v_{2}+w_{2}, \ldots, v_{n}+w_{n}\right]
$$

- inner (standard, scalar) product $\quad v \cdot w=v_{1} \cdot w_{1}+v_{2} \cdot w_{2}+\cdots+v_{n} \cdot w_{n}$ (please note: the result is a number).
- $k v=k \cdot v=\left[k v_{1}, k v_{2}, \ldots, k v_{n}\right]$ is the scalar multiplication.
(please note: the result is a vector). The resulting vector is k times as long as v (k times the original length
- Pointwise (Hadamard) product $v \circ w=\left[v_{1} \cdot w_{1}, v_{2} \cdot w_{2}, \ldots, v_{n} \cdot w_{n}\right]$

Vectors: preliminaries (3)

- if $\|v\|=1$ then v is called Unit vector
- vector $\mathbf{0}=[0,0, \ldots, 0]$ is called Zero vector. Is the neutral element for the additive operation.

It is the unique vector of norm zero.

- $z=-v=\left[-v_{1},-v_{2}, \ldots,-v_{n}\right]$ is the opposite vector of v. Indeed $v+z=v+(-v)=0$.
- the angle between vectors $v, w \neq 0$ is given by $\Theta_{v, w}=\arccos \frac{v \cdot w}{\|v\| \cdot\|w\|}$
- note that if $v \cdot w=0$ vectors are called orthogonal (perpendicular, normal)
- if $v \neq 0$ the vector $w=v /\|v\|$ is a unit vector

Vectors: preliminaries (4)

- $V=V_{n}=\left\{\left[v_{1}, v_{2}, \ldots, v_{n}\right] \mid v_{i} \in R\right\}$ is the (real) linear space of dimension n.
- a linear combination of k elements of V is of the form

$$
a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{k} v_{k}
$$

where a_{1}, \ldots, a_{k} are scalar and v_{1}, \ldots, v_{k} are vectors of V
Scalars are also called the coefficients of the linear combination.

- Vectors $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ are said linearly independent, if no element of S can be written as a linear combination of the other elements of S.
- a basis B of V_{n} is a linearly independent set B of size n
- standard basis is

$$
e_{1}=[1,0,0, \ldots, 0,0], \quad e_{2}=[0,1,0, \ldots, 0,0], \quad \ldots \quad e_{n}=[0,0,0, \ldots, 0,1]
$$

in collaboration with Mit SLoAN

Vectors: preliminaries (5)

(i) $v \cdot v=|v|^{2}$;
(ii) $v \cdot w=w \cdot v$;
(iii) $v \cdot(w+z)=v \cdot w+v \cdot z$;
(iv) $v \cdot(\alpha w)=(\alpha v) \cdot w=\alpha(v \cdot w)$;
(v) $|v \cdot w| \leq|v||w| ;$

Cauchy-Schwartz inequality
(vi) $|v+w| \leq|v|+|w|$;

NEIM

Lesson 1: Basic scientific computing tools

1. Vectors (arrays)
2. Matrices
3. Linear systems

Matrices: main concepts

- A matrix $A \in R^{m \times n}$ is a two-dimensional table in two big (round or square) brackets with m rows and n columns

$$
A=\left[\begin{array}{cccl}
a_{1,1} & a_{1,2} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \ldots & a_{m, n}
\end{array}\right]
$$

- A is a rectangular/square array of numbers, arranged in rows and columns.
$-m \times n$ is the order of the matrix
- row vectors are matrices with $m=1$ of order $1 \times n$
- Please note:
- column vectors are matrices with $n=1$ of order $m \times 1$ in collaboration with Mit SLOAN

Matrices: main concepts

- Matrices are usually denoted by capital letters
(example) Matrix $C=\left[\begin{array}{ccc}1 & 2 & -3 \\ 3 & 4 & 0\end{array}\right]$ is a 2×3 matrix.
- A is also denoted as

$$
A=\left(a_{i, j}\right)
$$

where real number $a_{i, j}$ is called entry or element with row index i and column index j

- A matrix with $m=n$ is called square matrix of order n

A matrix with $m \neq n$ is called rectangular matrix in collaboration with Mit SLOAN

Matrices: main concepts

A matrix A of order $m \times n$ contains

- m rows usually denoted by
- n columns usually denoted by
- main diagonal is given by

$$
A \equiv\binom{\frac{A_{1}}{A_{2}}}{\frac{\ldots}{A_{m}}} \quad A \equiv\left(A^{1}\left|A^{2}\right| \ldots \mid A^{n}\right)
$$

Matrices: main concepts

The set $R^{m, n}=\mathcal{M}_{m, n}(R)$ of all matrices of order $m \times n$ is a linear space with two binary operations: sum and scalar multiplication.

- The sum $C=A+B$ of two matrices is allowed only if they share the order (same number of rows and columns). It holds

$$
c_{i, j}=a_{i, j}+b_{i, j}, \quad \forall i=1, \ldots, m, \quad j=1, \ldots, n
$$

That is

$$
C=A+B=\left(a_{i j}\right)+\left(b_{i j}\right)=\left(a_{i j}+b_{i j}\right) .
$$

- If A is a matrix and $\alpha \in R$ is a scalar scalar multiplication, matrix $C=\alpha \cdot A$ is a matrix of the same order of A with entries

$$
C=\alpha \cdot A=\alpha \cdot\left(a_{i j}\right)=\left(\alpha a_{i j}\right) .
$$

Matrices: main concepts

Example

$$
\text { Given } \quad A=\left(\begin{array}{ll}
1 & 2 \\
3 & 1 \\
4 & 1
\end{array}\right), \quad B=\left(\begin{array}{rr}
0 & 2 \\
1 & -2 \\
3 & -2
\end{array}\right) \quad \text { compute } \quad C=A+B, \quad D=6 \cdot A
$$

- Sum

$$
C=A+B=\left(\begin{array}{ll}
1 & 2 \\
3 & 1 \\
4 & 1
\end{array}\right)+\left(\begin{array}{rr}
0 & 2 \\
1 & -2 \\
3 & -2
\end{array}\right)=\left(\begin{array}{ll}
1+0 & 2+2 \\
3+1 & 1-2 \\
4+3 & 1-2
\end{array}\right)=\left(\begin{array}{rr}
1 & 4 \\
4 & -1 \\
7 & -1
\end{array}\right)
$$

- scalar multiplication

$$
D=6 \cdot A=6 \cdot\left(\begin{array}{ll}
1 & 2 \\
3 & 1 \\
4 & 1
\end{array}\right)=\left(\begin{array}{cc}
6 \cdot 1 & 6 \cdot 2 \\
6 \cdot 3 & 6 \cdot 1 \\
6 \cdot 4 & 6 \cdot 1
\end{array}\right)=\left(\begin{array}{rr}
6 & 12 \\
18 & 6 \\
24 & 6
\end{array}\right)
$$

Matrices: main concepts

- matrix $0=\left(\begin{array}{cccc}0 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0\end{array}\right)$ is called zero matrix or null matrix.

It is the neutral element for the additive operation. It holds $0+A=A+0=A, \quad \forall A \in^{m, n}$.

- Matrix $B=\left(-a_{i j}\right)$ is the opposite matrix of A
- Difference of two matrices $A-B$ is just sum of A and the the opposite of B

$$
A-B=A+(-B)=\left(a_{i j}-b_{i j}\right) . \quad A=\left(\begin{array}{cc}
1 & 1 \\
2 & 0 \\
3 & 5
\end{array}\right) \quad A^{T}=\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 0 & 5
\end{array}\right)
$$

- matrix $A^{T}=\left(a_{j, i}\right)$ where rows and columns swap roles is called transpose of A

Matrices: main conceots

Structured matrices whose elements values depend od row and column indices

- A is symmetric if $a_{i j}=a_{j i} \quad A=\left(\begin{array}{ccc}1 & 3 & 4 \\ 3 & 1 & 5 \\ 4 & 5 & 2\end{array}\right)$
- A is anti-symmetric or skew-symmetric if $a_{i j}=-a_{j i} \quad A=\left(\begin{array}{rrr}0 & -3 & -1 \\ 3 & 0 & 5 \\ 1 & -5 & 0\end{array}\right)$
- A is diagonal if $a_{i j}=0, \quad \forall i \neq j \quad A=\left(\begin{array}{cccc}d_{1} & 0 & \ldots & 0 \\ 0 & d_{2} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & d_{n}\end{array}\right)$
in collaboration with MIT SLOAN

Matrices: main concepts

- $A=I$ is the identity matrix if it is a diagonal matrix with $a_{i j}=1 \quad \forall i=j \quad I_{n}=\left(\begin{array}{ccc}1 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 1\end{array}\right)$
- $A=U$ is upper triangular if $a_{i j}=0 \quad \forall i>j \quad U=\left(\begin{array}{cccc}u_{11} & u_{12} & \ldots & u_{1 n} \\ 0 & u_{22} & \ldots & u_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & u_{n n}\end{array}\right)$
- $A=L$ is lower triangular if $a_{i j}=0 \quad \forall i<j \quad L=\left(\begin{array}{cccc}l_{11} & 0 & \ldots & 0 \\ l_{21} & l_{22} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n 1} & l_{n 2} & \ldots & l_{n n}\end{array}\right)$

$A \quad$ order $m \times n$
matrix multiplication (matrix-matrix product) is a matrix C of order $m \times p$ whose entries are obtained as the dot product of A_{i} and B^{j}, that is

$$
C=\left(c_{i j}\right)=\left(A_{i} \cdot B^{j}\right), \quad \forall i=1, \ldots, m . \quad j=1, \ldots, p
$$

in collaboration with Mit SLoAN

matrix multiplication (matrix-matrix product) is a matrix C of order $m \times p$ whose entries are obtained as the dot product of A_{i} and B^{j}, that is

$$
C=\left(c_{i j}\right)=\left(A_{i} \cdot B^{j}\right), \quad \forall i=1, \ldots, m . \quad j=1, \ldots, p
$$

Matrices: multiplication

$$
\left[\begin{array}{ll}
B^{1} & B^{2} \\
1 & 2 \\
0 & 1 \\
1 & 4
\end{array}\right]{ }^{B}
$$

$$
\begin{aligned}
& A_{1} \\
& A_{2} \\
& A_{3}
\end{aligned}\left[\begin{array}{rrr}
1 & 2 & 2 \\
3 & 4 & 0 \\
5 & -6 & 1
\end{array}\right]\left[\begin{array}{cc}
A_{1} B^{1} & A_{1} B^{2} \\
A_{2} B^{1} & A_{2} B^{2} \\
A_{3} B^{1} & A_{3} B^{2}
\end{array}\right]
$$

MASTER IN ENTREPRENEURSHIP
INNOVATION MANAGEMENT INNOVAATON MANAGEMENT

Matrices: multiplication

$$
c_{1,1}=A_{1} \cdot B^{1}=\left[\begin{array}{ccc}
1 & 2 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=1 \cdot A_{1}, 2 \cdot 0+2 \cdot 1=3, \stackrel{\text { un }}{\text {, }}
$$

$$
c_{1,2}=A_{1} \cdot B^{2}=\left[\begin{array}{ccc}
1 & 2 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
1 \\
\\
\\
A_{1}
\end{array}\right]=1 \cdot 2+2 \cdot 1+2 \cdot 4=12
$$

$$
c_{2,1}=A_{2} \cdot B^{1}=\left[\begin{array}{ccc}
3 & 4 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0 \\
\\
A_{2}
\end{array}\right]=3 \cdot 1+4 \cdot 0+0 \cdot 1=3
$$

$$
\left[\begin{array}{ll}
B^{1} & B^{2} \\
1 & 2 \\
0 & 1 \\
1 & 4
\end{array}\right] B
$$

$$
\begin{array}{l}
A_{1} \\
A_{2} \\
A_{3}
\end{array} \underbrace{1}_{A} \begin{array}{ccc}
1 & 2 & 2 \\
3 & 4 & 0 \\
5 & -6 & 1
\end{array}]\left[\begin{array}{cc}
{\left[\begin{array}{c}
A_{1} B^{1}
\end{array} A_{1} B^{2}\right.} \\
A_{2} B^{1} & A_{2} B^{2} \\
A_{3} B^{1} & A_{3} B^{2}
\end{array}\right]=\left[\begin{array}{rr}
3 & 12 \\
3 & 10 \\
6 & 8
\end{array}\right]
$$

Matrices: multiplication (properties)

(i) Associativity $A \in^{m, n}, B \in^{n, p}, C \in^{p, q}$ then $(A B) C=A(B C)$.
(ii) Left distributivity $\quad A \in^{m, n}, B, C \in^{n, p}$ then $A(B+C)=A B+A C$.
(iii) Right distributivity $A \in^{n, p}, B, C \in^{m, n}$. then $(B+C) A=B A+C A$.
(iv) $A \in^{m, n}, B \in^{n, p}, \alpha \in$ then $\alpha(A B)=(\alpha A) B=A(\alpha B)$.
(v) Neutral element I_{n} and I_{m} identity matrices (of order n and m), $A \in^{m, n}$ then $I_{m} A=A I_{n}=A$
(vi) Transpose multiplication

$$
A \in^{m, n} \text { and } B \in^{n, p} \quad \Longrightarrow(A B)^{T}=B^{T} A^{T}
$$

Matrices: matrix-vector multiplication as a linear combination

MatrixA by column vector x produces a column $A x$ that is the linear combination of columns of A with components of x as coefficients

$$
\left.\begin{array}{rl}
\left(A^{1}\left|A^{2}\right| \cdots \mid A^{k}\right)\left(\frac{\frac{x_{1}}{x_{2}}}{\frac{\cdots}{x_{k}}}\right) & =x_{1}\left(A^{1}\right)+x_{2}\left(A^{2}\right)+\cdots+x_{k}\left(A^{k}\right) \\
A & x
\end{array}\right)=x_{1} A^{1}+x_{2} A^{2}+\cdots+x_{k} A^{k}
$$

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
1 & 4 & \sqrt{3} \\
3 & 1 & 19
\end{array}\right), \quad x=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right) \\
A x= & \left(\begin{array}{ccc}
1 & 4 & \sqrt{3} \\
3 & 1 & 19
\end{array}\right) \cdot\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)=\binom{6}{7} \\
= & 2 \cdot\binom{1}{3}+1 \cdot\binom{4}{1}+0 \cdot\binom{\sqrt{3}}{19} \\
= & x_{1} A^{1}+x_{2} A^{2}+x_{3} A^{3}
\end{aligned}
$$

Matrices: vector - matrix multiplication as a linear combination

Row vector x by matrix A produces a row $x A$ that is the linear combination of rows of A with components of x as coefficients

$$
\begin{gathered}
\left.\left(x_{1}\left|x_{2}\right| \cdots \mid x_{k}\right)\binom{\frac{A_{1}}{A_{2}}}{\frac{\cdots}{A_{k}}}=\begin{array}{c}
x_{1}\left(\begin{array}{l}
A_{1} \\
+ \\
x_{2}(\\
+ \\
+ \\
+ \\
+x_{k}(\\
{ }^{2}
\end{array}\right. \\
\cdots
\end{array}\right) \\
x
\end{gathered} \begin{aligned}
& \left.A_{k}\right) \\
& A=x_{1} A_{1}+x_{2} A_{2}+\cdots+x_{k} A_{k}
\end{aligned}
$$

Matrices: inverse matrix

- A square matrix of order n. $B=A^{-1}$ is called inverse of A if $B A=A B=I_{n}$.
- inverse is denoted by $\operatorname{inv}(A)$ Alert: not all matrices have an inverse
- matrix
$A=\left(a_{i j}\right)$ of order 2 is invertible iff $a_{11} a_{22}-a_{12} a_{21} \neq 0$. In this case it is

$$
A^{-1}=\frac{1}{a_{11} a_{22}-a_{12} a_{21}}\left(\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right)
$$

$$
\begin{aligned}
& A=\left[\begin{array}{rr}
9 & -4 \\
3 & 2
\end{array}\right] \quad a_{11} a_{22}-a_{12} a_{21}=9 \cdot 2-(-4) \cdot 3=30 \neq 0 . \\
& A^{-1}=\frac{1}{9 \cdot 2-(-4) \cdot 3}\left[\begin{array}{cc}
2 & 4 \\
-3 & 9
\end{array}\right]=\frac{1}{30}\left[\begin{array}{cc}
2 & 4 \\
-3 & 9
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{15} & \frac{2}{15} \\
-\frac{1}{10} & \frac{3}{10}
\end{array}\right]
\end{aligned}
$$

Matrices: inverse matrix (properties)

(i) if A^{-1} is the inverse of A, then A is the inverse of A^{-1}.
(ii) If A and B are invertible $A B$ is also invertible and $(A B)^{-1}=B^{-1} A^{-1}$
(iii) If A is invertible then also A^{T} is invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
(iv) if $A=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is diagonal, then it is invertibile iff $d_{1}, d_{2}, \ldots, d_{n} \neq 0$.

In this case $A^{-1}=\operatorname{diag}\left(d_{1}^{-1}, d_{2}^{-1}, \ldots, d_{n}^{-1}\right)$.

$$
A=\left(\begin{array}{cccc}
\frac{3}{2} & 0 & 0 & 0 \\
0 & -\frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{4}{\pi} & 0 \\
0 & 0 & 0 & \frac{e}{3}
\end{array}\right) \quad A^{-1}=\left(\begin{array}{cccc}
\frac{2}{3} & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & \frac{\pi}{4} & 0 \\
0 & 0 & 0 & \frac{3}{e}
\end{array}\right)
$$

Matrices: determinant (small order $n=1, n=2, n=3$)

Symbols $\operatorname{det}(A), \quad \operatorname{det} A, \quad|A|$.

Case

$$
n=1, \quad A=\left(a_{11}\right) \Rightarrow \operatorname{det} A \stackrel{\text { def }}{=} a_{11} .
$$

Case $\quad n=2, A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) \Rightarrow \operatorname{det} A \stackrel{\text { def }}{=} a_{11} a_{22}-a_{12} a_{21}$.

c	A		A^{1}
$\left[\begin{array}{cc\|c\|c\|c}a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32}\end{array}\right]$			

Case

$$
n=3 \quad \operatorname{det} A \stackrel{\text { def }}{=} a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}
$$

$$
-a_{13} a_{22} a_{31}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}
$$

Matrices: determinant (Laplace expansion, recursive definition)

Consider submatrices obtained by rembing 1 row and 1 column

$$
A_{i j}=\left(\begin{array}{ccccccc}
a_{1,1} & \ldots & a_{1, j-1} & * & a_{1, j+1} & \ldots & a_{1, n} \\
\ldots & \ldots & \ldots & * & \ldots & \ldots & \ldots \\
a_{i-1,1} & \ldots & a_{i-1, j-1} & * & a_{i-1, j+1} & \ldots & a_{i-1, n} \\
* & * & * & * & * & * & * \\
a_{i+1,1} & \ldots & a_{i+1, j-1} & * & a_{i+1, j+1} & \ldots & a_{i+1, n} \\
\ldots & \ldots & \ldots & * & \ldots & \ldots & \ldots \\
a_{n, 1} & \ldots & a_{n, j-1} & * & a_{n, j+1} & \ldots & a_{n, n}
\end{array}\right)
$$

$\operatorname{det} A \stackrel{\text { def }}{=} a_{i 1} C_{i 1}+a_{i 1} C_{i 2}+\cdots+a_{i n} C_{i n}=\sum_{j=1}^{n} a_{i j} C_{i j}$.
or
$\operatorname{det} A \stackrel{\text { def }}{=} a_{1 j} C_{1 j}+a_{1 j} C_{2 j}+\cdots+a_{n j} C_{n j}=\sum_{i=1}^{n} a_{i j} C_{i j}$.

$$
C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j} .
$$

Matrices: determinant (properties)

$$
A=\left(A^{1}\left|A^{2}\right| \ldots \mid A^{n}\right) \text { square of order } n
$$

(i) $\alpha \in A^{k}$ column of A then $\operatorname{det}\left(A^{1}|\ldots| A^{k-1}\left|\alpha A^{k}\right| A^{k+1}|\ldots| A^{n}\right)=\alpha \operatorname{det} A$.
(iii) If A has two equal columns $\operatorname{det} A=0$.
(iv) $\operatorname{det} I_{n}=1$.
(v) If A has a zero column $\operatorname{det} A=0$.
(vi) If A has two parallel columns $\operatorname{det} A=0$.
(vii) if some columns are linearly dependent $\operatorname{det} A=0$.
(same properties for rows)

Matrices: determinant (properties)

$A=\left(A^{1}\left|A^{2}\right| \ldots \mid A^{n}\right)$ square of order n.
(viii) Swapping columns produces change in sign of the determinant
(ix) Adding to a column a multiple of another one does not chadnge the determinant
(x) If A is diagonal or triangular the determinant is the product of diagonal elements:

$$
\operatorname{det} A=a_{11} a_{22} \cdots a_{n n}
$$

(xi) $\operatorname{det} A=0 \mathrm{iff}$ columns are linearly dependent
(xii) $\operatorname{det}(A B)=\operatorname{det} A \operatorname{det} B$.
(same properties for rows)

NEIM

Lesson 1: Basic scientific computing tools

1. Vectors (arrays)
2. Matrices
3. Linear systems

Linear systems: a linear equation ...

- A linear equation has the form

- a solution in tuple whiche verifies equation

$$
x_{1}+3 x_{2}-x_{5}=2
$$

Some solution vectors

$$
(1,1,27,53,2), \quad(2,3, \pi, 3,9), \quad(0,3,-15 \pi, 0,7)
$$

Linear systems: more linear equations, i.e linear systems

Consider $m \geq 1$ linear equations sharing same $n \geq 1$ unknowns $x_{1}, x_{2}, \ldots, x_{n}$:

$$
a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}=b_{i} \quad(i=1,2, \ldots, m)
$$

$a_{i j}$ coefficient of x_{j} in equation $i, \quad b_{i}$ constant of equation i

- a linear system of m equations in n unknowns has the form

$$
\mathbf{\Sigma}:\left\{\begin{array}{ccccc}
a_{11} x_{1}+ & a_{12} x_{2}+ & \cdots+ & a_{1 n} x_{n}= & b_{1} \\
a_{21} x_{1}+ & a_{22} x_{2}+ & \cdots+ & a_{2 n} x_{n}= & b_{2} \\
\ldots & \cdots & \cdots & \cdots & \cdots \\
a_{m 1} x_{1}+ & a_{m 2} x_{2}+ & \cdots+ & a_{m n} x_{n}= & b_{m}
\end{array}\right.
$$

- a vector $\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)$ is called solution of $\boldsymbol{\Sigma}$ iff is a solution of all equations

INNOVATION MANAGEMENT
in collaboration with Mit SLOAN

Linear systems: matrix form

- Let observe that if we denote by $A=\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{i 1} & a_{i 2} & \ldots & a_{i n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right) \quad x=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \ldots \\ x_{n}\end{array}\right) \quad b=\left(\begin{array}{c}b_{1} \\ \ldots \\ b_{i} \\ \ldots \\ b_{m}\end{array}\right)$

$$
\text { it is } \quad A x=b
$$

- please note that to solve the system means to find coefficients used to express b as a linear combination of columns of A

Linear systems: linear systems with a unique solution

- if A is square $\boldsymbol{\Sigma}$ is said to be square. Rectangular otherwise.
- if A is square the system is said to be
- singular if $\operatorname{det} A=0$
- nonsingular if $\operatorname{det} A \neq 0$,
- Theorem (Cramer): if A is nonsingular, linear systems $A x=b$ will have a unique solution.
- methods for computing solution should take in account the structure of A
- We show three methods: one for diagonal systems, one for triangular systems and one for "full" systems

Linear systems: DIAGONAL SYSTEMS

What linear systems are fast to solve?

DIAGONAL SYSTEMS
$a_{11} x_{1_{1}}=b_{1}$
$a_{22} x_{2_{2}}=b_{2}$
$a_{33} x_{3_{3}}=b_{3}$
$a_{44} x_{4}=b_{4}$

$$
\left(\begin{array}{llll}
a_{11_{1}} & & & \\
& a_{222} & & \\
& & a_{33_{3}} & \\
& & & a_{44}
\end{array}\right)\left(\begin{array}{l}
x_{1_{1}} \\
x_{2_{2}} \\
x_{3_{3}} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
b_{1_{1}} \\
b_{2_{2}} \\
b_{3_{3}} \\
b_{4}
\end{array}\right)
$$

Immediate solution

$$
\begin{aligned}
& x_{x_{1}}=\frac{b_{1}}{a_{11}} \\
& x_{1_{2}}=\frac{b_{2}}{a_{22}} \\
& x_{3_{3}}=\frac{b_{3}}{a_{33}} \\
& x_{4_{4}}=\frac{b_{4}}{a_{44}}
\end{aligned}
$$

Linear systems: TRIANGULAR SYSTEMS TRIANGULAR SYSTEMS

$$
\left\lvert\, \begin{array}{rccc}
a_{11} x_{11} & +a_{12} x_{2} & +a_{13} x_{3_{3}} & +a_{14} x_{44}=b_{1} \\
& a_{22} x_{2} & +a_{23} x_{3_{3}} & +a_{24} x_{4}=b_{22} \\
& a_{33} x_{3_{3}} & +a_{34} x_{4}=b_{33} \\
& & & a_{44} x_{4}=b_{44} \\
& & & \\
& & &
\end{array}\right.
$$

$$
\left.\left(\begin{array}{cccc}
a_{11_{1}} & a_{12_{2}} & a_{13_{3}} & a_{14} \\
& a_{22} & a_{23} & a_{24} \\
& & a_{33} & a_{34} \\
& & & a_{44}
\end{array}\right)\left(\begin{array}{l}
x_{14} \\
x_{2_{2}} \\
x_{3_{3}} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
b_{1_{1}} \\
b_{2_{2}} \\
b_{3_{3}} \\
b_{4_{4}}
\end{array}\right) \right\rvert\,
$$

1) $x_{4}=\frac{b_{4}}{a_{44}}$

$$
\text { 3) } x_{2_{2}}=\frac{b_{2}-a_{23} x_{3}-a_{24} x_{4}}{a_{22}}
$$

$$
\text { 4) } x_{\mathrm{i}_{1}}=\frac{b_{i_{1}}-a_{\mathrm{id} 2} x_{2}-a_{\mathrm{ij} 3} x_{3}-a_{14} x_{4}}{a_{i 11}}
$$

Linear systems: TRIANGULAR SYSTEMS
IN GENERAL \rightarrow Backward Substitution Algorithm (matlab code)

```
x(n)=b (n)/A (n,n)
for i=n-1:-1:1
    x(i)=b(i)
    for j=i+1:n
        x(i)=x(i)-A(i,j)*x(j)
    end
    x(i)=x(i)/A(i,i)
end
```


Linear systems: FULL SYSTEMS (Gaussian elimination)

Gaussian elimination method transforms a full system of n equations in a equivalent triangular one in $n-1$ steps

Idea
At step k, to subtract suitable vectors, multiple of equation k, to all equations at the bottom so that elements in column k under the diagonal element become 0

How to do this?

Linear systems: Gaussian Elimination
IN GENERAL \rightarrow Gaussian Elimination Algorithm (matlab code)

```
for \(\mathrm{k}=1: \mathrm{n}-1\)
    for \(i=k+1: n\)
        \(\mathrm{M}(\mathrm{i})=\mathrm{A}(\mathrm{i}, \mathrm{k}) / \mathrm{A}(\mathrm{k}, \mathrm{k})\)
        for \(j=k+1: n\)
            \(A(i, j)=A(i, j)-M(i) * A(k, j)\)
        end
        \(b(i)=b(i)-M(i) * b(k)\)
    end
end
```


Thanks for your attention
 Digital Tech HPC continues

