INTRODUZIONE ALLA MATEMATICA

C.d.S. in Economia e Management

I Prova Intercorso - 30 ottobre 2023

Cognome: _	 	 	
Nome:	 	 	
Matricola: _			

Domanda n.	1	2	3	4	5	6	7	8	9	10
Risposta										

1) Data una funzione $f: S \to T$, suriettiva in T, con T =]-1, 0[, si può affermare che

A)
$$\not\exists \min_{x \in S} f(x)$$
 e $\not\exists \max_{x \in S} f(x)$.

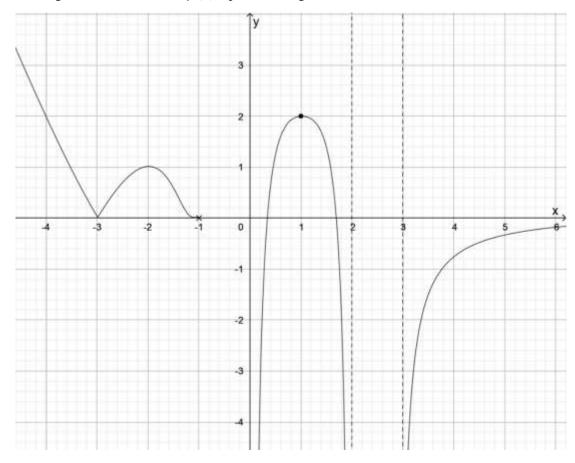
B)
$$\min_{x \in S} f(x) = -1$$
 e $\nexists \max_{x \in S} f(x)$.

C)
$$\not\exists \min_{x \in S} f(x)$$
 e $\max_{x \in S} f(x) = 0$.

- 2) Data una funzione $f: S \to T$ invertibile, si può affermare che
- A) la funzione è pari.
- B) la funzione è biunivoca.
- C) la funzione è limitata.
- 3) Data la funzione numerica definita mediante la legge $f(x) = x^n$, con n pari, si può affermare che
- A) f è suriettiva su \mathbb{R} , ma non è iniettiva.
- B) f è limitata inferiormente e illimitata superiormente.
- C) f è illimitata inferiormente e illimitata superiormente.
- 4) Dati a > 1 e f la funzione definita mediante la legge $f(x) = \log_a x$, si può affermare che
- A) $f(x) \ge 0$ per $x \in]0, 1]$.
- B) $f(x) \ge 0$ per $x \in [1, +\infty[$.

- C) $f(x) \ge 0$ per $x \in]1, +\infty[$.
- 5) Data la funzione f definita mediante la legge

$$f(x) = \frac{\sqrt{e^x + 5}}{|x^2 - 4|},$$


denominato con E[f] il suo campo di esistenza, si può affermare che

A)
$$E[f] =] - \infty, -2[\cup] - 2, 2[\cup] 2, +\infty[.$$

B)
$$E[f] =] - \infty, -2[\cup]2, +\infty[.$$

C)
$$E[f] = [-\infty, +\infty]$$
.

Si consideri il grafico della funzione f(x) riportato in figura.

- 6) Denominato con X il campo di esistenza di f(x) e con Y la sua immagine, si scelga una alternativa:
- A) $X =]-\infty$, $-1[\cup]3$, $+\infty[$
- e $Y = \mathbb{R}$.
- B) $X =]-\infty, -1[\cup]0, 2[\cup]3, +\infty[$
- e $Y = \mathbb{R}$.
- C) $X =]-\infty, -1[\cup]0, 2[\cup]3, +\infty[$
- e $Y =]-\infty, 2].$
- 7) Facendo riferimento allo stesso grafico, si può affermare che
- A) f(x) è biunivoca su \mathbb{R} .

- B) f(x) è suriettiva su \mathbb{R} ma non è iniettiva.
- C) f(x) non è né suriettiva su \mathbb{R} né iniettiva.
- 8) Facendo riferimento allo stesso grafico, si può affermare che
- A) f(x) è illimitata inferiormente e limitata superiormente.
- B) f(x) è limitata inferiormente e illimitata superiormente.
- C) f(x) non ammette massimo assoluto.
- 9) Facendo riferimento allo stesso grafico, si può affermare che
- A) f(x) non ammette zeri.
- B) f(x) ammette più di uno zero.
- C) f(x) ammette un unico zero.
- 10) Facendo riferimento allo stesso grafico, si può affermare che
- A) f(x) non presenta minimi o massimi relativi.
- B) f(x) = 2 è un massimo relativo e x = -2 è il punto in cui si realizza.
- C) f(x) = 2 è un massimo relativo e x = 1 è il punto in cui si realizza.

ESERCIZIO 1

Sia f la funzione definita mediante la seguente legge

$$f(x) = \sqrt{\frac{x+1}{x^2 - 3x + 2}}.$$

Determinare il campo di esistenza di f.

ESERCIZIO 2

Sia f la funzione definita mediante la seguente legge

$$f(x) = \log(\log(5x - 1) + 1).$$

Determinare il campo di esistenza di f.

ESERCIZIO 3

Rappresentare graficamente la funzione elementare $f(x) = \log_a x$, con 0 < a < 1, e descriverne le caratteristiche.