INTRODUZIONE ALLA MATEMATICA

C.d.S. in Economia e Management

I Prova Intercorso

Cognome: _	 		
Nome:	 	 	
Matricola: _	 	 	

Domanda n.	1	2	3	4	5	6	7	8	9	10
Risposta										

- 1) Una funzione $f: S \to T$ si dice *iniettiva*, si scelga un'alternativa:
- A) Se ad ogni elemento del dominio corrispondono due o più elementi del codominio.
- B) Se ogni elemento del codominio è immagine di al più un elemento del dominio.
- C) Se ogni elemento del codominio è immagine di almeno un elemento del dominio.
- 2) Data una funzione $f: S \to T$, dove T = [-8, -2[, si scelga un'alternativa:
- A) $\min f = -8 e \max f = -2$.
- $B) \min f = -8 e \not\exists \max f.$
- C) f è limitata inferiormente e illimitata superiormente.
- 3) Siano n un numero naturale e f la funzione definita mediante la legge $f(x) = \sqrt[n]{x}$, si scelga un'alternativa:
- A) f è limitata inferiormente e limitata superiormente.
- B) f è illimitata inferiormente e limitata superiormente.
- C) f è limitata inferiormente e illimitata superiormente.
- 4) Dati a > 0, $a \ne 1$ e f la funzione definita mediante la legge $f(x) = a^x$, si scelga un'alternativa:
- A) l'estremo inferiore di $f \ eller eller$ eller di $f \ eller$ eller eller
- B) il minimo di $f \ge 0$.
- C) l'estremo superiore di f è $+\infty$.

5) Data la funzione f definita mediante la legge

$$f(x) = \sqrt{x^2 - 4x}$$

Denominato con E[f] il suo campo di esistenza si scelga un'alternativa:

A)
$$E[f] =] - \infty, -4] \cup \{0\} \cup [4 + \infty[.$$

B)
$$E[f] =]-\infty,0]$$
 \cup [4 + ∞ [

C)
$$E[f] =] - \infty, 0[\cup]4 + \infty[.$$

Si consideri il grafico della funzione f(x) riportato in figura.

6) Denominato con X il campo di esistenza di f(x) e con Y la sua immagine, si scelga un'alternativa:

A)
$$X =]-\infty$$
, 2] \cup]4, $+\infty$ [;

$$Y=]-\infty,5].$$

B)
$$X =]-\infty$$
, 2] \cup]4, $+\infty$ [;

$$Y=]-\infty,4].$$

C)
$$X =]-\infty$$
, $2[\cup]4$, $+\infty[$;

$$Y =]-\infty, 5].$$

7) Si scelga un'alternativa:

A)
$$f(x)$$
 è invertibile.

B)
$$f(x)$$
 è strettamente decrescente in]1, 2[.

C)
$$f(x)$$
 è strettamente decrescente in]4, $+\infty$ [.

8) Si scelga un'alternativa:

- A) f(x) è limitata.
- B) f(x) è limitata inferiormente.
- C) f(x) è illimitata inferiormente.
- 9) Si scelga un'alternativa:
- A) f(x) non ammette zeri.
- B) f(x) ammette più di uno zero.
- C) f(x) ammette un unico zero.
- 10) Si indichi quali delle seguenti affermazioni è vera:
- A) f(x) non presenta minimi o massimi relativi.
- B) f(x) = 5 è un massimo relativo e x = 0 è il punto di massimo relativo in cui si realizza.
- C) f(x) = 5 è un massimo relativo e x = 1 è il punto di massimo relativo in cui si realizza.

ESERCIZIO 1

Sia f la funzione definita mediante la seguente legge:

$$f(x) = \log\left(\frac{x^2 - 5x + 4}{3 - x}\right).$$

Determinare il campo di esistenza di f.

ESERCIZIO 2

Sia f la funzione definita mediante la seguente legge:

$$f(x) = \sqrt{\log(x-1) + 1}.$$

Determinare il campo di esistenza di f.

ESERCIZIO 3

Descrivere le caratteristiche della funzione elementare $f(x) = x^{\alpha}$, con $\alpha \in \mathbb{R}$ e $\alpha < 0$.