
Notes on data management in Digital Technologies

prof. Antonio Maratea

July 2022



2

Introduction

In any organization, the information requirements
can no longer be satisfied through a collection of a
few, well organized, structured data, compliant to
a scheme and kept safe in a relational system. On
the contrary, the proliferation of acquisition sources,
the low cost of memories and the enormous com-
puting power of current computers have made com-
mon to store, for analytic purposes, both structured
and unstructured data, coming from heterogeneous
sources and with a significant volume. The changed
needs have led to the adoption of hybrid solutions
capable of taming the great variety, complexity and
dimensionality of current data, and generated the
Data Scientist (DS) — a professional figure on whose
shoulders the burden of ensuring a difficult coexis-
tence between conflicting needs lies. The DS should
be able to handle completely different storage sys-
tems, heterogeneous data and increasingly high per-
formance demands.

First a quick reference to basic notions on data en-
coding and file format, then a detailed list of the pa-
rameters that characterize the system requirements
to be set up is presented, finally the mapping prob-
lem is formalized.

Data encoding

Any representation of information through data
passes through an encoding, that, once chosen the
set of symbols — the alphabet — and the appropri-
ate translation rules, transforms the information into
a sequence of such symbols.

For example in Morse code for telegraphy, where
the only symbols allowed are the dot ”·” and the line
”–” the latin letter F is coded in ”· · – ·”.

In the field of Computer Science, for purely tech-
nological reasons, the use of two-state devices has
historically prevailed over multi-state devices and
therefore the low-level coding of any information is
ultimately binary, i.e. it uses a two-symbol alphabet
(conventionally 0 and 1). Note that it is possible to
superimpose one encoding on another, using higher
levels of abstraction, as well as constructing words
starting from letters and phrases starting from com-

binations of words. Therefore the binary data ”1111”
can become the letter F in hexadecimal encoding
and can represent a letter of a Western alphabet, a
number or a color depending on the context and the
way it is read. The most abstract encodings hide the
underlying binary code and appear as sequences of
symbols other than 0 and 1, although ultimately at-
tributable to these.

File extension

The extension of a file or the header of the file reveals
in what format the data are stored in that file, that is,
what is the correct way to read its bytes. It is as if
each format would represent a specific encoding for
all the files of that same type, which establishes how
the bytes contained in them are to be interpreted and
how those files can be opened correctly, similarly to
a song that can be recorded on LP, on CD or left in
“liquid ”form for a multimedia player and which,
depending on the chosen format, needs the relative
device to be listened to.

Although all files are ultimately binary, we con-
ventionally distinguish plain text files from binary
files, and data files from executable files, with the fol-
lowing meanings:

• plain text files are files whose bytes correspond
1: 1 to a natural language text character encod-
ing (including special characters). This feature
does not optimize storage space, but makes the
file very easy to read and edit, being directly in-
terpretable by a human being.

• binary files on the other hand are files whose
bytes need a specific application to be opened
and are not directly intelligible for a human be-
ing.

• Data files are files in which there are no bytes
that correspond to instructions to be executed,
but only bytes that correspond to encoded in-
formation in the form of data to be read, written
or modified.

• Executable files are compiled programs that con-
tain, in addition to data, bytes corresponding to
instructions for the processor.



3

From now on, data will be referred to as a data file,
in text or binary format as appropriate.

Data nature

It is clear from the premises that in computer sys-
tems data are always binary and always require de-
coding to be interpreted, in this sense all data in any
format (except randomly generated bit files) have a
very precise structure. However, the following clas-
sification is commonly accepted:

• Structured data, that is in the form attribute =
value which conforms to a schema and which can
be stored in the form of rows and columns of
a relationship (this is the standard data type in
classical relational systems). They can be en-
closed in plain text files. The scheme allows nu-
merous consistency checks on the data entered.

• Semi-structured data, that is, data that is still
enclosed in text files, but for which conformity
to a schema does not exist or is partial (eg XML,
JSON, CSV formats etc.).

• Unstructured data, that is data that are enclosed
in binary files, not intelligible to a human being,
where the schema is completely absent (they are
called schemaless) and to decode which a specific
application is needed (e.g. images, sounds, pre-
sentations, PDF, PPT, DOC, XLS etc files). Plain
text files are also conventionally considered un-
structured if their content is free text without
any labels, markings or separators indicating a
structure.

Data sources

The data can be obtained from the compilation of
forms, i.e. direct writing, by human beings and are
called human generated, or they can be generated by
a machine and are called machine generated, in which
case they can be measurements of any physical phe-
nomenon made through a sensor or generated di-
rectly by a software process independently from a
physical phenomenon.

The generation frequency is relevant for all and re-
gardless of this we speak of data in Streaming when
the data is generated continuously, possibly from
multiple sources, and of data in Batch when the gen-
eration is discontinuous or irregular. The frequency
of data generation is essential to estimate the volume
of data collected in a given time interval according to
the following formula:

f ·∆t (1)

where ∆t is the time interval and f is the average
volume of data generated (in bytes or multiples) per
unit of time.

In a typical case human generated text files and
machine generated binary files must be managed
and coexist, all with various categories and different
acquisition frequencies.

Definition of expected require-
ments

Having established the nature of the data to be
stored, identified the sources from which they come
and estimated their generation frequency, the next
step is to establish the requirements that the system
must have both to ensure the correct ingestion of the
data and to guarantee its efficient recovery and the
necessary periodic backup.

0.0.1 Frequency and type of access

Not all data have the same priority with respect to
access, especially as they age, and a Pareto distribu-
tion of requests is very common, where the 80/20
rule of thumb applies (80 % of requests concern 20 %
of the data). In this sense we speak of temperature
of the data, expressed in the following categories:

• Hot data: the most frequently requested data.
Usually less than 1/5 of the total, usually the
most recent, where most of the optimization ef-
forts are concentrated;

• Warm data: data with infrequent requests. Usu-
ally uninformative data, not very recent or peri-
odic backups for short-term restores;



4

• Cold data: data with very rare requests, such
as full backups, historical data, auditing data,
summary reports;

• Frozen data: data that is kept indefinitely for
mainly legal reasons, where the recovery time
can also be very long.

Figure 1: Percentage of requests as a function of the
percentage of data involved.

It is then possible to operate on each of these cate-
gories of data:

• Reads only.

• Mostly reads.

• Readings and writings.

• Mostly writings.

• Writings only.

The prevailing type of operation determines the type
of primary organization and preferable technology.
For example, if readings are predominantly made on
the most recent data and these are unstructured, a
primary organization sorted by timestamp in a key-
value system is likely the solution to be adopted.

Sometimes a temporary memory area called Stag-
ing Area is required to ensure data ingestion, which
in more complex cases can become a real Data Lake.
Also for this area it is necessary to estimate the ideal
size and add its cost to the total management costs.

The data life cycle

Each data has its own time horizon, i.e. a time win-
dow within which it is useful, usually with a de-
creasing utility trend over time similar to a func-
tion χ2. While maintaining a similar trend, in the

Figure 2: trend of the usefulness of data over time.
t = 0 is the acquisition instant.

same context the time window of usefulness of the
data can vary from a few hours (think of table reser-
vations at a restaurant) to tens of years (think of
personal registry for documents), with various con-
straints that they are legal rather than technical.

From the point of view of storage, data cools as
they age, that is, its priority decreases and both
readings and changes on them become less fre-
quent. Since low-priority storage areas have higher
order-of-magnitude access times and lower order-
of-magnitude costs, it is up to the Data Scientist to
decide wisely when to downgrade the data that are
less useful at that time.

Hardware or resources available or re-
quired

From a traditional view of hosting data in house, we
can imagine three levels of mass storage available:

• fast and expensive semi-random access, online,
medium capacity memories (eg HD NVMe,
SSD, intel optane);

• memories of medium speed and cost with semi-
random access, online, of good capacity (eg ro-
tational HDs);



5

• slow and inexpensive, sequential access, large
capacity, offline memories (eg tapes).

For each of these memories it is necessary to es-
timate the total capacity, the annual cost per byte,
the latency, the throughput, the availability and the
durability and it is up to the Data Scientist to decide
how best to allocate the data and which technologies
to use at each level of the hierarchy. He must also es-
tablish a periodic backup policy, which can be incre-
mental, full or mixed, trying to avoid or reduce sys-
tem downtime and ensuring that all important data
is not lost in the event of a failure.

In-house hosting involves very high management
and updating costs and, unless there are particular
needs for privacy and confidentiality of the data, it is
no longer economically convenient. Cloud hosting,
on the other hand, ensures a wide range of options
in terms of performance and prices, with the impor-
tant advantage of a pay-as-you-use pricing option and
simple scalability if needed, with zero hardware up-
grade costs.

Characteristics of data storage systems

availability (or uptime) quantifies the percentage of
time that data is accessible in a year, that is the prob-
ability that a request will be satisfied in a year. A
value of 99% of availability means that in a year
there are 3.65 days in total — the 1% — of data un-
availability (downtime) — this value may or may
not be acceptable, since it is not all applications must
be operational 24/7. On the other hand, going up
to 99.99% the unavailability is reduced to about 53
minutes per year, but the costs of the service also rise
considerably. Higher availability figures are difficult
to achieve due to hardware maintenance operations
in data centers. Also in this case it is up to the Data
Scientist to find an acceptable compromise between
the cost of adding significant figures to the availabil-
ity and the losses resulting from the temporary un-
availability of the data.

Note that since the availability value does not take
into account network outages, problems with the
ISP, faults or power outages downstream of the pur-
chased service and since the actual availability de-

pends on a logical AND between the operation of
the local and global network, of the client, of the
ISP, by the absence of hardware failures or extraordi-
nary maintenance operations, the actual availability
will be the product of the various availabilities and
will be strongly conditioned by the minimum value
pmin.

a = p1p2p3 . . . pn (2)

For example, if the ISP guaranteed a 98% network
availability, and this was the minimum value, it
means a downtime of one week in a year and at that
point buying 99.99 availability for the data hosting
service would be completely ineffective.

The durability or persistence is in turn expressed
with a value that quantifies the probability that a
memorized object will not be lost in one year. It
seems strange to see persistence expressed as a per-
centage because we are used to thinking that once
stored in the bare metal the data are safe, but in real-
ity the hard disks have a probability of failure that is
never zero and there is the possibility that the data
will be corrupted or lost.

In the case of data hosting services, persis-
tence is guaranteed with 11 significant figures -
99.999999999%. Such a value is possible thanks
to multiple copies of data and redundant error-
correcting encodings and what it means in practice
is that even on Petabytes of data stored for pro-
longed periods of time the probability of losing a
file is extremely low, much lower than storing it on
a hard drive or tape and even lower than an aster-
oid hits the earth. Note that in this case a value of
99.99% would mean having one file lost in every ten
thousand, which in a large number of real-world ap-
plications is unacceptable.

The latency is the average time it takes for a re-
quest to be answered. It is a parameter whose maxi-
mum value is largely determined by a human factor,
representing the maximum time that a user of the
system is reasonably willing to wait before seeing
his request satisfied. It is very important to generate
a good User eXperience (UX) that the latency is low
and as constant as possible, regardless of the volume
of data processed, and this is achieved through care-
ful physical design and fine tuning of the system.



6

The throughput is the volume of data that the
system is able to ingest and process in the unit of
time, it must be adequate in relation to the volume
of data generated. If the volume of data generated
is greater than the throughput, the system is under-
sized; in the event that this happens only in partic-
ular moments (think of traffic peaks due to holidays
or exceptional circumstances) it is necessary to have
a staging area with an adequate throughput to then
postpone the ingestion at a later time.

reliability is the ability of the system to recover to
a consistent state following a non-catastrophic mal-
function or failure. It is a fundamental requirement
of transactional systems, although there are cases
where it is not strictly necessary. It is often cou-
pled with a failover mechanism that guarantees sys-
tem operation even during recovery (such as fuzzy
checkpointing) and helps to define what is called re-
silience, i.e. the ability of the system to continue
operating even at following a hardware or software
failure.

The access control can be mandatory and discre-
tionary. While on SQL-based systems this control is
native, on alternative systems it is often not available
and must be implemented in another way.

The consistency is the guarantee of data integrity
and, in a distributed environment, the guarantee
of consistency of the various copies of the data.
It is necessary to evaluate on a case-by-case ba-
sis whether strong consistency is necessary (ACID
properties, SQL systems) or whether the eventual
consistency (BASE properties, NOSQL systems) is
sufficient, or a certain delay in the synchronization
of the copies is tolerable.

The cryptography is the protection of data against
unwanted reading, and it is necessary to establish at
each level of the hierarchy of memories and in each
data transfer in output or in the system if it is neces-
sary and in what form. It requires a significant over-
head so should be used only if strictly necessary.

The mapping problem

The final task of the Data Scientist is to establish
which data goes on which system and with which

technology, at what level of the memory hierarchy
and at what annual cost.

This process is a surjective mapping between data
and storage resources, made in such a way as to re-
spect the requirements imposed on the data itself
in terms of availability, latency, temperature etc: on
the one hand there are the data to be managed clas-
sified according to their nature and their tempera-
ture (priority) and on the other hand the available
or necessary memory resources, henceforth called
media. Each line indicates which data ends up on
which storage / support resource it should be noted
with the technology chosen to manage it (key-value,
graph, relational etc.). Coexistence of multiple sys-
tems is the norm.

The Data Scientist also establishes the data parti-
tioning strategy, redundancy level, the load level of
each system (how much free space to leave), the ex-
pected performance (latency and throughput), the
type of technology to use and any other detail of
the physical design necessary to ensure compliance
with the previously established requirements.

Figure 3: mapping between data (left) and storage
resources (right).

To this end, it is essential to evaluate the following
quantities.

0.0.2 Estimation of data volume

Considering the various types of data (structured,
semi-structured and unstructured) and the various



7

sources, each of them generally produces data of one
or more different types at different frequencies.

Assuming without losing generality four sources
called S1, S2, S3, S4, each generally has three data
generation frequencies: fst

S.
for structured data; fss

S.

for semi-structured data; fns
S.

for unstructured data.
The total volume of data generated by type in a time
interval ∆t is given by the following formulas:

V st = ∆t

4∑
i

fst
Si

(3)

V ss = ∆t

4∑
i

fss
Si

(4)

V ns = ∆t

4∑
i

fns
Si

(5)

Vtot = V st + V ss + V ns (6)

that if each source produces only one type of data 1

and S3 and S4 are sources of the same type, simpli-
fies as follows:

V st = ∆tfst
S1

(7)
V ss = ∆tfss

S2
(8)

V ns = ∆t(fns
S3

+ fns
S4

) (9)
Vtot = V st + V ss + V ns (10)

It is important to keep the separate volume estimate
according to the nature of the data, not only Vtot,
given the need to manage data of different nature
with different technologies.

Workload estimation

Workload estimation serves to size not only the
memory, but also the computing power needed to
manage the requests of the various users on the data.
When dealing with data-intensive applications, it is
crucial to assess the I/O load to which each storage
resource is subjected. A workload consists of a set of
transactions launched in a defined time interval and

1It is always possible to put oneself in this condition by consid-
ering as coming from independent sources the data of a different
nature arriving from the same source

can include a certain volume of writing data and a
certain volume of reading data, on which the size of
a possible cache memory and the effectiveness of the
chosen caching policy, both condensed in the hit ratio
HR parameter of the cache, have a major effect.

Assuming a single cache and three storage re-
sources, B,C and D, are available, sorted by de-
creasing temperature TB > TC > TD and called me-
dia, a set of k transactions Tr1, T r2, ldots, T rk op-
erating on the system can write and read simulta-
neously on multiple media. The aim is to estimate
how many writes and how many reads occur per
unit of time on each media. Called WB the number
of write operations on B overall present in k trans-
actions and RB the number of read operations on B
overall present in k transactions in the same time in-
terval Deltat, the total number of I / O operations
on each media is:

OB = (1−HR)(WB +RB) (11)
OC = (1−HR)(WC +RC) (12)
OD = (1−HR)(WD +RD) (13)

Otot = (1−HR) (14)

Knowing the average time for each I/O on each me-
dia, it is possible to calculate the ∆s time required
to run the k transaction workload and compare it to
∆t. If the ratio r = ∆s/∆t is close to 1, the system is
not dimensioned adequately, while a good balance
is obtained with a value r < 0.2.

The workload can be very variable over time, in
which case a worst-case analysis is required rather
than a mean-case analysis and normally a Poisson
distribution is used (figure 4). However, sizing ev-
erything on the worst case may not be a good idea
in economic terms if this is quite rare and if it does
not lead to a total blockage of the system but only a
slowdown. The estimate can also be made at dif-
ferent time granularity (hourly, daily, weekly etc.)
where there are credible data on the number of
transactions submitted to the system instant by in-
stant in operating conditions.



8

Figure 4: Distribution of the number of successive
I/O in a given time interval.

Estimation of storage costs

Assuming three storage resources are available, B,C
and D, sorted by decreasing temperature TB >
TC > TD (therefore by decreasing price cB() >
cC() > cD(), where c() is the cost function per byte /
year) and assuming four data sources S1, S2, S3, S4,
each producing a different volume of data per
unit of time, respectively V1, V2, V3, V4, the map-
ping function indicates which data goes to which
medium. Assuming without losing generality the
absence of fragmentation between the data of the
same source (but the fragmentation could very well
exist) and a redundancy factor f1, f2, f3, f4, with 1 ≤
f. leq1.5, different among the various sources, the
cost of storage for one year of data with the map-
ping function in figure 3 is given by the following
formula:

CT = cD(V1f1) + cB(V2f2) + cC(V3f3 + V4f4) (15)

that in case of a solution with a constant value of
temperature (cB() = cC() = cD() = c()) and con-
stant redundancy (f1 = f2 = f3 = f4 = f ) is simpli-
fied as follows:

CTOT = c(f

4∑
i

Vi). (16)

The cost functions c() can be time-dependent, in
which case the annual cost is the integral over the

year of the daily (or hourly) cost:

CTOT =

∫ t2

t1

c(t) dt. (17)

Conclusion

“I always thought something was fundamentally
wrong with the Databases”


