
www.meim.uniparthenope. i t

DIGITAL TECH
High Performance Computing

MASTER MEIM 2022-2023

Lesson 4

Prof. Livia Marcellino

Prof. of High Performance Computing, Università degli Studi di Napoli Parthenope

Parallel Software Design

The knowledge of how the hardware is made and the study of tools available allows us for
choosing the most suitable HPC environment and the strategy of more efficient parallelization
for the numerical resolution of our large-scale problem.

PARALLEL COMPUTING
Decompose a problem

in more subproblems

and solve them at the same time

with more processing units!

Need to create machines that can distribute the work among them
hardware development

The most important modern parallel architectures

Computer MIMD
DM

(distributed-memory)

CPU
1

CPU
2

CPU
N

MEM MEM MEM

Computer MIMD
SM

(shared-memory)

CPU
1

CPU
2

CPU
N

MEMORIA

CPU
1

CPU
2

CPU
N

MEMORY

communications
between

processes

synchronization
in memory

access synchronization
and communication
between different

devices

Parallel and distributed software performance:
performance measures

Evaluate the efficiency of

a parallel algorithm

in a parallel computing environment

What does "EFFICIENCY" mean?

Efficiency of a sequential algorithm

 COMPUTATIONAL COMPLEXITY T(N)
Operations number make by the algorithm

 SPACE COMPLEXITY S(N)
Variables number used by the algorithm

Example: sum of N=16 numbers

addiction number = 15

temporal steps = 15

Time

complexity
T(N)=N-1 addictions

Example: sum of N=16 numbers

addiction number = 15

temporal steps = 15

Time

complexity T1(16)=15

SEQUENTIAL ALGORITHM 1 CPU

Execution time of serial software

= k·T1(n) · mt

…from now on we will consider the multicore environment

Computer MIMD
DM

(distributed-memory)

CPU
1

CPU
2

CPU
N

MEM MEM MEM

Computer MIMD
SM

(shared-memory)

CPU
1

CPU
2

CPU
N

MEMORIA

CPU
1

CPU
2

CPU
N

MEMORY

…from now on we will consider the multicore environment

Computer MIMD
SM

(shared-memory)

CPU
1

CPU
2

CPU
N

MEMORIA

CPU
1

CPU
2

CPU
N

MEMORY

Efficiency of a parallel algorithm

Example: sum of N=16 numbers

PARALLEL ALGORITHM 2 CPUs

Additions number = 15

BUT

Temporal steps = 8

• 1 addiction

Temporal steps 1-7:

Temporal step 8:

14 addictions
(7 for each CPU)

Example: sum of N=16 numbers

PARALLEL ALGORITHM 2 CPUs

Additions number = 15

BUT

Temporal steps = 8

T2(16)=8

Addictions number = 15

BUT

Temporal steps = 5

Example: sum of N=16 numbers

PARALLEL ALGORITHM 4 CPUs

1 addiction

12 addictions

2 addictions

Temporal steps 1-3:

Temporal steps 4:

Temporal steps 5:

Addictions number = 15

BUT

Temporal steps = 5

Example: sum of N=16 numbers

PARALLEL ALGORITHM 4 CPUs

T4(16)=5

Addictions number = 15

BUT

Temporal steps = 4

Example: sum of N=16 numbers

PARALLEL ALGORITHM 8 CPUs

T8(16)=4

Tp(16)p
15 1
82
54
48

In general, how much is Tp?

??p

now I put everything in a table…

In general: Tp(N) computation

PARALLEL ALGORITHM: sum of N numbers

p CPUs

N = 16

p=1 T1=15
p=2 T2=8 = (7+1)
p=4 T4=5 = (3+2)
p=8 T8=4 = (1+3)
………………

Tp(N)= (N/p-1 +log2 p)

Questions…

Tpp
151
82
54
4 8

How much faster is it than the sequential algorithm?

What is the fastest algorithm? ?

The algorithm that uses 8 CPUs is the fastest
It is 3.75 times faster than that with 1 CPU

3.75
3.00

1.88

1.00

48

54

82

151

Tpp

Example: sum of N=16 numbers

T1/Tp

Speed-up

The speed up measures the execution
time reduction with respect to the

serial algorithm
௣

The ratio of T1 to Tp is defined

IDEAL SPEEDUP
௣
௜ௗ௘௔௟௘

Oh = (pTp – T1)
OVERHEAD

The OVERHEAD measures

how much the speed up differs from the ideal one

Remark

𝑆௣
௜ௗ௘௔௟௘ =

𝑇ଵ

𝑇௣
= 𝑝

The speed-up on 8 GPUs is the highest

Speed-up
ideal

Speed-upp

21.882

43.004

83.758

BUT
The speed-up using 2 GPUs is

"the closest" to the ideal speed-up

Example: sum of N=16 numbers

… if you compare the speed-up to the number of
CPUs ...

Sp/pSpp

0.941.882

0.753.004

0.473.758 using p=2

The best ratio

Example: sum of N=16 numbers

Efficiency

measures how much the algorithm

exploits the parallelism

IDEAL EFFICIENCY

The ratio of Sp to p

Remark:

For

MIMD-DM and GPU environments,

the execution time does NOT depend only on the operations number

I have to consider also times for data communications

Given definitions are only for the

MIMD-SM environments

Let’s take a break

Why do we have to measure the performance of a parallel algorithm?

the need of a real time solution!

Big Data Problems

• Search on the Internet
• Automatic Planning
• Advertising and Marketing
• Banking and financial services
• Media and Entertainment
• Meteorology
• Health Care
• Cyber Security
• Training

Problems characterized by the need to obtain
real-time solution (or just in time!)

High Performance Computing
for financial applications

Numerical Model
Mh(P)

Parallel Numerical Model
Mh,np(P)

Parallel Algorithm
Anp(P)

Parallel Software
Snp(P)

Problem Solving
chain

Mathematical Model
M(P)

Problem
P

High Performance Computing for financial applications

Among applications that can benefit from HPC architectures there is the Financial Data Mining.

• Dynamic multi-stage management of portfolio

• Risk management

• Stock valuation

Financial Data Mining

Problem
P

High Performance Computing for financial data mining

Dynamic multi-stage management of portfolio

Portfolio optimization is widely used by banks and companies to offer financial services,
it is used to solve the problem of how to diversify investments in different asset classes.

Due to the many uncertain factors, the final financial model is a stochastic problem, where
the parameters are random.

To solve it efficiently, a possible solution is to decompose the problem into sub-
problems, which are solved in parallel.
In this way managers can predict the solution, using their models on parallel algorithms
based on the previous day's trading results and rebalance their portfolio in real time.

Numerical Model
Mh(P)

Mathematical Model
M(P)

High Performance Computing for financial data mining

Risk management

Stock investments always imply a compromise called risk-reward. The goal of investors
is to minimize this risk and increase gain.

The Value-at-Risk is used to forecast the loss of money and usually it is estimated using
the Monte-Carlo method (simulatation of possible “scenarios” that can happen in the
real world based on past security prices and probability theory).

Increasing the number of simulations the results obtained can become very
accurate.
This problem it is easily parallelizable since each simulation can be performed
independently, by using a functional decomposition.

Numerical Model
Mh(P)

Mathematical Model
M(P)

High Performance Computing for financial data mining

Stock valuation

In order to evaluate the stock price mathematical models,
based on partial-differential equation are used.

The computational kernel of the numerical solution involves
linear and non linear systems.

Parallel solution of linear and non linear systems is a challage in
MIMD environment

Numerical Model
Mh(P)

Mathematical Model
M(P)

Parallel solution of linear systems of equations

Numerical Model
Mh(P)

Parallel Numerical Model
Mh,np(P)

System of equations

A linear system of equations (𝑚 equations and 𝑛 unknowns)

If m=n I can try to compute

the unique solution,
if it exist

In matrix form: 𝐴𝑥 = 𝑏

A → coefficient matrix

x → vettore of unknowns

b → vettor of known terms (Right-Hand Side Vector)

Among numerical methods to solve
linear System of equations…

LU factorization

A → coefficient matrix

x → vettore of unknowns

b → vettor of known terms (Right-Hand Side Vector)

Compute A=LU

Among numerical methods to solve
linear System of equations
by LU factorization

what can I do in parallel?

The work on matrix A must be decomposed among the processing units

A0
A1
A2

…A0 A1 A2
A01

A11
A10

A00

Numerical Model
Mh(P)

Parallel Numerical Model
Mh,np(P)

Parallel Numerical Model
Mh,np(P)

Parallel Algorithm
Anp(P)

Parallel Software
Snp(P)

Problem Solving
chain

…
coming up to the

software

Python for parallel computing
on multicore environments

Python is an object-oriented "high-level" programming language, suitable for multiple uses such
as data analysis, artificial intelligence, websites, scripting, numerical computation, etc.
Python was developed in 90’ to improve the Perl language.

Main features:

• Easy understanding
• Dynamic Typing
• Dynamic Bindings
• Interpreted language
• Garbage Collector
• Portability

Python for computing

By using Python solve a linear system
with matrix A of size 4000x4000
on Intel®Core i7-1065G7,
in a serial way.
Execution time: 5.91 seconds

NumPy
NumPy (Numerical Python) it is an open source extension for scientific computing in
Python. It provides support for large matrices and multidimensional arrays with
precompiled fast functions that operate efficiently on these data structures.

Cython
Cython is a Python compiled language aimed at getting results comparable to the
performance of the C programming language. It offers the combined power of
Python and C in order to exploit the characteristics of both languages.

Numba
Numba is a just-in-time (JIT) compiler for Python, compatible with NumPy. It allows
us to optimize many functions using the LLVM infrastructure which produces
optimized machine code.

Python for accelerate computing

Python for parallel computing
PyOMP
PyOmp is a new, experimental library developed in December 2021 by researchers at Intel.
It uses Numba's naïve parallelism and the OpenMP directives in a Python environment to exploit the full
power of modern multicore parallel architectures.

PyPardiso
PyPardiso is a library that acts as interface for the linear system solver PARDISO, used in Python, i.e. an open
source, interpreted and object-oriented programming language (flexibility and portability).

The acronym PARDISO stands for "PARallel DIrect SOLver“.
This package is a thread-safe, high-performance, robust, memory efficient and easy to use
software for solving large sparse symmetric and unsymmetric linear systems of equations on
shared-memory, distributed-memory multiprocessors and NVIDIA's GPUs.

