
www.meim.uniparthenope. i t

DIGITAL TECH
High Performance Computing

MASTER MEIM 2022-2023

Lesson 3

Prof. Livia Marcellino

Prof. of High Performance Computing, Università degli Studi di Napoli Parthenope

PARALLEL COMPUTING
Decompose a problem

in more subproblems

and solve them at the same time

with more processing units!

Need to create machines that can distribute the work among them
hardware development

Numerical Model
Mh(P)

Parallel Numerical Model
Mh,np(P)

Parallel Algorithm
Anp(P)

Parallel Software
Snp(P)

What does parallel thinking mean?

Parallel and distributed software design

The most important modern parallel architectures

Computer MIMD
DM

(distributed-memory)

CPU
1

CPU
2

CPU
N

MEM MEM MEM

Computer MIMD
SM

(shared-memory)

CPU
1

CPU
2

CPU
N

MEMORIA

CPU
1

CPU
2

CPU
N

MEMORY

communications
between

processes

synchronization
in memory

access synchronization
and communication
between different

devices

Computational kernels:
data structures

whatever is the problem to be solved

(and you have seen and will see it in the previous and next lessons)

the basic computational kernels to parallelize are based on

only two kind data structures:

vectors and matrices

i.e. 1D-2D arrays

Computational kernels:
domain decomposition

to decompose the problem and solve it in parallel

it is enough to better understand the concept of

domain decomposition

A simple example:
sum of N elements of 1D - array

a0+a1+…+aN-1

a

Sum of N numbers

On a single processor computer, the sum is computed by
performing N-1 additions

one at a time

sumtot := a0

sumtot := sumtot + a1

sumtot := sumtot + a2

sumtot := sumtot + aN-1

Sum of N numbers

On a single processor computer, the sum is computed by
performing N-1 additions

one at a time

Which is the

PARALLEL ALGORITHM?

begin
sumtot:= a0;
for i=1 to N-1 do

sumtot:= sumtot+ai ;
endfor

end

The parallel paradigm of MIMD architectures
sum of N numbers

To split a problem of size N in np equal sub-problems of size N/np e to
solve them concurrently by using np CPU

N
N/np N/np

N/npN/np

A simple example:
sum of N elements

1D – array domain decomposition

a

a_loc0 a_loc1 a_loc2

… … …
a_locp-1

To decompose the domain in order to decompose the problem

STEP 1: domain and problem decomposition...

…divide the sum into partial sums and assign
each partial sum to a processor…

a_loc0 a_loc1 a_loc2 a_locp-1

s0 s1 s2 sp-1

Decomposed Domain

Decomposed Problem

… … …

STEP 2: local results collection...

… then the partial sums must be combined
properly to obtain the total sum

s0 s1 s2 Sp-1

Local Results

Global Result

… … …

sum

The parallel algorithm

once it is clear the basic concept of

the domain-problem decomposition and the results collection,

to write the algorithm it is essential to have in mind

the hardware characteristics of the computer machine

Computer MIMD
DM

(distributed-memory)

CPU
1

CPU
2

CPU
N

MEM MEM MEM
communications

between
processes

Input: only one PC (the master) can be read input data

Parallel sum – MIMD-DM

Example: N=16, p=4

CPU CPU CPU CPU

Local
memories

P0 P1 P2 P3

a0
a1
.
.
.

a15

data must be distributed
among the processors

Data distribution: the master PC sends local data to the other PCs in the cluster

Parallel sum – MIMD-DM

Example: N=16, p=4

CPU CPU CPU CPU

Local
memories

P0 P1 P2 P3

a0
a1
.
.
.

a15

a0
a1
a2
a3

a4
a5
a6
a7

a8
a9
a10
a11

a12
a13
a14
a15

Local sum computation: each PC computes a sum using the data in its memory

Parallel sum – MIMD-DM

Example: N=16, p=4

CPU CPU CPU CPU

Local
memories

P0 P1 P2 P3

a0
a1
a2
a3
s0

a4
a5
a6
a7
s1

a8
a9
a10
a11
s2

a12
a13
a14
a15
s3

How to compute the global sum?

in order to obtain the sumtot value,
each PC (processor) must communicate its local result to others PCs

Communication
between the different memories

Parallel sum – MIMD-DM

Local results collection:

To create a distributed memory MIMD machine that has
undemanding production costs, clusters are generally used,
i.e. sets of autonomous computers connected to each other
through the I/O interconnections, and therefore with
connectors and cables typical of a standard network.

Each computer has its own separate copy of the operating
system, which increases the administration costs,
but this drawback can be easily overcome by using

virtual shared memory machines.

MIMD: distributed memory (DM)

MIMD-DM architectures
cluster of multiprocessors - tools

Homogeneous clusterHomogeneous cluster

CPU
1

CPU
2

CPU
N

MEM MEM MEM

Message Passing Interface
MPI

Need to organize
communications

between
processors

Message Passing Interface
MPI

Network

CPU

memory

Processore 0

CPU

memory

Processore 1

CPU

memory

Processore N

……

Each processor directly
accesses to its own local

memory directly
and

can know data stored in
memory of other processors,

through data transfer.

MIMD-DM architectures
cluster of multiprocessors - tools

MIMD-DM architectures
cluster of multiprocessors - tools

The MPI library born in 1991 and over the years many versions have been proposed to make it more user
friendly.
To date, any other library for developing parallel code in the MIMD-DM environment is based on MPI and
its message passing paradigm:

• PBLAS (Parallel Basic Linear Algebra Subprograms), based on BLAS

• ScaLAPACK (Scalable Linear Algebra PACKage), based on LAPACK

• …
• …

• PETSc (Portable, Extensible Toolkit for Scientific Computation)

Specific parallel software for numerical solution (in MIMD-DM environment) of problems modeled by differential equations
(ODE-PDE)and in particular to deal with systems of linear and non-linear equations which represent

the computational kernel in discretizing of ODEs and PDEs.

MIMD-DM architectures
cluster of multiprocessors - tools

Today, to do parallel computing in a distributed environment can be considered a bit agè compared to parallel
paradigms available on new HPC architectures, especially for time required by data transfer!
But it remains very useful for problems characterized by a large amount of data…

…and above all it has been transformed, in a very useful way, into the new technologies of GRID computing
and in particular into the well-known CLOUD computing o storage

Re-use of existing resources:
users can acquire and release resources

dynamically

heterogeneous clustersheterogeneous clusters

Let’s take a break

Computer MIMD
SM

(shared-memory)

CPU
1

CPU
2

CPU
N

MEMORIA

CPU
1

CPU
2

CPU
N

MEMORY

synchronization
in memory

access

Computer MIMD
SM

(shared-memry)

CPU
1

CPU
2

CPU
N

MEMORIA

CPU
1

CPU
2

CPU
N

MEMORY

MIMD-SM
this type of hardware works according to the fork-join model

All processes start with a single thread
(master thread)

which executes sequentially

Computer MIMD
SM

(shared-memry)

CPU
1

CPU
2

CPU
N

MEMORIA

CPU
1

CPU
2

CPU
N

MEMORY

MIMD-SM
this type of hardware works according to the fork-join model

Fork: a parallel region starts when a team of
threads is created and it proceeds in parallel

Computer MIMD
SM

(shared-memry)

CPU
1

CPU
2

CPU
N

MEMORIA

CPU
1

CPU
2

CPU
N

MEMORY

MIMD-SM
this type of hardware works according to the fork-join model

Join: when all the threads of the team have
finished the instructions of the parallel region, the

master thread works again sequentially,
until a new FORK call is made

Input: the master core (thread) reads input data

Parallel sum – MIMD-SM

Example: N=16, p=4 a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

Global
memory

CORE CORE CORE CORE

C0 C1 C2 C3

Local sum computation: all cores can simultaneously access global memory
on different data

Parallel sum – MIMD-SM

Example: N=16, p=4
a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

Global
memory

CORE CORE CORE CORE

C0 C1 C2 C3

s0 s1 s2 s3

How to compute the global sum?

in order to update correctly the sumtot value,
each core must have exclusive access to this variable during the last phase

Synchronization
of memory accesses

Parallel sum – MIMD-SM

Local results collection:

Example: N=16, p=4

Parallel sum – MIMD-SM

Local results collection: 1 strategy

sumtot=sumtot+s0

updates and writes

a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

sumtot

s0

CORE CORE CORE CORE

C0 C1 C2 C3

s1 s2 s3

Example: N=16, p=4

Parallel sum – MIMD-SM

Local results collection: 1 strategy

sumtot=sumtot+s1

updates and writes

a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

sumtot

CORE CORE CORE CORE

s1 s2 s3s0

C0 C1 C2 C3

Example: N=16, p=4

Parallel sum – MIMD-SM

Local results collection: 1 strategy

sumtot=sumtot+s2

updates and writes

a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

sumtot

CORE CORE CORE CORE

s1 s2 s3s0

C0 C1 C2 C3

Example: N=16, p=4

Parallel sum – MIMD-SM

Local results collection: 1 strategy

sumtot=sumtot+s3

updates and writes

a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

sumtot

CORE CORE CORE CORE

s1 s2 s3s0

C0 C1 C2 C3

Example: N=16, p=4

Parallel sum – MIMD-SM

Local results collection: 1 strategy

a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

sumtot



15

0i
iasumtot

CORE CORE CORE CORE

C0 C1 C2 C3

Each core
• compute its own partial sum.

At every step
•each core adds, its own partial sum to a single predetermined values.

The global sum is stored in the shared memory.

Each core
• compute its own partial sum.

At every step
•each core adds, its own partial sum to a single predetermined values.

The global sum is stored in the shared memory.

Concurrent operations

I strategy (MIMD-SM)

Example: N=16, p=4

Parallel sum – MIMD-SM

Local results collection: 2 strategy

updates and writes

s01 = s0 + s1

a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

s01

s0

CORE CORE CORE

C0 C1 C2 C3

s1 s2 s3

s23

CORE

s23 = s2 + s3

Example: N=16, p=4

Parallel sum – MIMD-SM

Local results collection: 2 strategy

updates and writes

a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

s01

s0

CORE CORE CORE

C0 C1 C2 C3

s1 s2 s3

s23sumtot = s01 + s23

CORE

sumtot

Example: N=16, p=4

Parallel sum – MIMD-SM

Local results collection: 2 strategy

a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

sumtot



15

0i
iasumtot

CORE CORE CORE CORE

C0 C1 C2 C3

Each core
• compute its own partial sum.

At every step
• half of cores (with respect to the previous step)

computes a contribution of the partial sum.

The global sum is stored in the shared memory.

Each core
• compute its own partial sum.

At every step
• half of cores (with respect to the previous step)

computes a contribution of the partial sum.

The global sum is stored in the shared memory.

Concurrent operations

II strategy (MIMD-SM)

There are several tools
for software development in

MIMD-Shared Memory
computing environment

OpenMp - Pthreads

MIMD-SM architectures
multicore processor - tools

Cores of the same processor share the same memory area,
working together, by synchronizing the accesse to shared
variables.

Open specifications
for Multi Processing

OpenMP

C
H

IP
 pr

o
ce

ss
o

r

CORE CORECORE

Th
re

ad

MEMORIA
Th

re
ad

Th
re

ad
Process

Process area

MIMD-SM architectures
multicore processor - tools

The OpenMP library born in 1997. It is composed by directives for compiler to create teams of threads
and to establish which instructions must be executed in parallel and how they must work, by means of
some clauses. The OpenMP library is very simple to use.

Più complessa è invece la libreria POSIX Threads (Pthreads), ma su quest’ultima si basano le versioni
per l’ambiente multi-core delle più note librerie numeriche:
The POSIX Threads (Pthreads) library is more complex, but on this one are based all numerical libraries
for multi-core environment of the:

• PLASMA (Parallel Linear Algebra for Scalable Multi-core Architectures). Developed in 2006 but still
under development, it includes a set of routines for basic linear algebra operations (based on BLAS)
and more routines for solving systems of linear equations (based on LAPACK).… …

It is also possible to install and use the PETSc library in order to run parallel code
which uses its routines in multicore environment, avoiding data transfer.

MIMD-SM architectures
cluster of multiprocessors with multicore - tools

Two or more parallel paradigms can be combined together on hybrid architectures.

Example:
A merge of parallel paradigm for Shared Memory environment (multicore) by using the OpenMP library
(inside each cluster’s node) with a parallel paradigm for Distributed Memory environment (cluster of
multiprocessors) by using the MPI library (outside between nodes).

network

synchronization
and communication
between different

devices

Computer MIMD
+

GPU
(Graphic Processing Unit)

What are GPUs?
GPU = Graphic Processing Unit

GPUs born in the Computer Graphics field: rendering
and graphics operations, parallel approach for big data

parallel microprocessors of modern video cards
for computer or console

Thanks to their parallel processing power,
the GPUs were also used in

General Purpose applications!

why use GPUs?

Actually, GPUs offer the best performance
at a low market cost.

Referring to Moore's Law (CPUs performance doubles every 18 months),
GPUs performance double every 6 months.
Remark: triple Moore's Law!

GPU: the programming model

The programming model
considers the CPU and the GPU
as two distinct and separate
machines, called host and device.

Each program combines:
sequential parts (demanded to the host) and parallel parts (demanded to the device).

The parts of code which work in parallel are called kernel.
The host calls the kernels by configuring the device to run in parallel, passing it some
parameters. The device runs only one kernel at a time.

The host get back the results from the
device memory to the host memory

Basic structure of a CUDA application

Before calling a kernel, the host transfers the data to be processed from the
CPU memory to the GPU memory.

The host calls the kernel, passing it
the parameters and configuring its execution.

Input: the CPU (hots) reads input data

Parallel sum – on GPU

Example: N=16, p = many, many, many… all that I need!

a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

Data transfert: the host transfers data to be processed from the CPU
memory to the GPU memory.

Parallel sum – on GPU

Example: N=16, p = many, many, many… all that I need!

a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

GPU memory organization

The memory of the GPU device can be divided into different types distinguishable by the
latency in access time.
The most important are: GLOBAL memory, LOCAL memory and
SHARED memory.

In this space, controlled by the host, are the
variables transferred from the host to the
device and vice versa.
Memory interface between HOST-DEVICE

 Global memory is a read/write area, external to multiprocessors
streaming and shared between all multiprocessor

the access time to this memory is
very high, but the global memory is

the immediate interface with the
RAM memory of the CPU.

So it is inevitable to use it

GPU memory organization

The memory of the GPU device can be divided into different types distinguishable by the
latency in access time.
The most important are: GLOBAL memory, LOCAL memory and
SHARED memory.

Shared memory: low-latency access area shared between all
processors of the same streaming of multiprocessors.

This memory is very fast,
but very small

GPU memory organization

The memory of the GPU device can be divided into different types distinguishable by the
latency in access time.
The most important are: GLOBAL memory, LOCAL memory and
SHARED memory.

Local memory: private space for each individual processors
where local variables are stored.

Also, these memories are very fast,
but they can be used only

for local computation

by suitably combining the use of these memories, very high
performances can be achieved

Organization of GPU memories

Local sum computation: all processors can simultaneously access global
memory on different data, in a very similar way to MIMD-SM environment

Parallel sum – on GPU

Example: N=16, p = many, many, many… all that I need!

a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

local computation
is stored in local memory

Local results collection: in a very similar way to MIMD-SM environment,
by 1st or 2nd strategy

Parallel sum – on GPU

Example: N=16, p = many, many, many… all that I need!





15

0i
iasumtot

Final sums
is stored in the global memory

Data transfert: the device transfers results from the GPU global memory to
the CPU memory.

Parallel sum – on GPU

Example: N=16, p = many, many, many… all that I need!





15

0i
iasumtot





15

0i
iasumtot

it is clear that using GPUs only makes sense when
data to be processed concurrently is really a lot

and
to use many many processors provides

high performance, in terms of exection time,
despite the price of host-device data transfer

There are several tools
for software development

for GPU environment

CUDA

MIMD-SM architectures
many-core GPU - tools

The CUDA library (or environment) born in 2006. It combine serial code for the host (CPU) with parallel
code, called kernel for the device (GPU).

The CUDA environment provides a suite of libraries for high-level programming…

MIMD-SM architectures
many-core GPU - tools

The CUDA environment provides a suite of libraries for high-level programming…

MIMD-SM architectures
many-core GPU - tools

The cuSolver library is an high-level toolkit composed by direct solutors in
managing problems characterized by matrix dense and sparse. It is based on
CUDA and in particular on the cuBLAS (CUDA Basic Linear Algebra
Subroutines) e cuSPARSE (CUDA Sparse Matrix) libraries.

cuSolver provides useful function for:

 matrix factorization,
 linear and non-linear system solution,
 least squares problems,
 eigenvalues comutation,
 …

That’s all for today!

Thinking parallel communications
between

processes

synchronization
in memory

access

synchronization
and communication
between different

devices

