
www.meim.uniparthenope. i t

DIGITAL TECH

[High Performance] Computing

MASTER MEIM 2022-2023

Lesson 1

Prof. Giulio Giunta

Prof. of Scientific Computing, Università degli Studi di Napoli Parthenope

Algorithms are old stuff

algorithm for dividing the amount of grain
of a barn among several individuals:

Sumerian tablet, Euphrates valley, 2500 B.C.

input: capacity of granary C, predetermined part
per person P

output: number N of people who can receive the
portion of wheat: N = C/P

Algorithms are old stuff

Babylonian tablet, 1800 B.C.

dividend / divisor

Step 1) calculation of the inverse (reciprocal) of the divisor

Step 2) multiplication by the dividend

algorithm for dividing the amount of grain
of a barn among several individuals:

Reflection on the speed of humanity's evolution

Indonesia, 40.000 BC Chauvet Cave, 35.000 BC Altamira Cave, 16.000 BC

Lascaux Cave, 14.000 BC
Sistine Chapel, 1.400 AD

Reflection on the speed of humanity's evolution

Indonesia, 40.000 BC Chauvet Cave, 35.000 BC Altamira Cave, 16.000 BC

Lascaux Cave, 14.000 BC

DALL-E, today

Prompt: depict a computer

and a programmer as a

Lascaux cave painting

Algorithms are old stuff

A more complex algorithm: Euclid’s algorithm (300 BC)
for the greatest common divisor

Euclid, detail of the fresco The School of Athens,
Raphael 1510

def gcd(m,n):

if m < n:

(m,n) = (n,m)

r = m

while r != 0:

r = m % n

(m, n) = (n, r)

return n

Algorithms are old stuff

Euclid, detail of the fresco The School of Athens,
Raphael 1510

def gcd(m,n):

if m < n:

(m,n) = (n,m)

r = m % n

if r == 0:

return n

else:

return (gcd(n, r))
recursive version of Euclid’s algorithm

A more complex algorithm: Euclid’s algorithm (300 BC)
for the greatest common divisor

Executing Algorithms

Gottfried von Leibniz
(Leipzig 1646 -1716)

«It is not worthy of excellent men to waste
hours as slaves in the manual activity of
calculating, which could certainly be
entrusted to a machine»

Executing Algorithms

Charles Babbage
(London 1791-1871)

Difference Engine Analytical Engine

Executing Algorithms

Charles Babbage
(London 1791-1871)

a politician asks Babbage :

Babbage's answer :
I am not able to rightly apprehend
the kind of confusion of ideas that could
provoke such a question !

Pray, Mr. Babbage, if you put into the machine wrong
figures, will the right answers come out

Charles Babbage Institute
Center for History of Information Technology
http://www.cbi.umn.edu/

Virginia Tech, USA
History of computing and virtual museum
http://ei.cs.vt.edu/~history

Executing Algorithms
It is not necessary to have an infinite number of different machines
available to perform different tasks. It is enough to have only one.
The problems of producing various machines for different tasks turn
into desk work, which consists of programming the universal
machine to do those tasks. (A. Turing, 1940)

John von Neumann
(Budapest 1903 - Washington 1957)

Alan Turing

(London 1912 –
Manchester 1954

The machine must calculate, then it must contain an arithmetic
central, which constitutes the first specific module.
The logical control of the machine, that is, the appropriate sequential
frequency of its operations can be carried out by a central control
module.
The machine must perform long sequences of operations, then it
must have a considerable memory, which constitutes the third
specific module.
The machine must also maintain an input - output contact with the
outside.
The machine must have components to transfer information between
the various modules.(J. Von Neumann, I Draft of a Report on the
EDVAC, 1945)

Executing Algorithms

the term Computer meant the operatorsENIAC, the first electronic calculator 1943-45

EDVAC, the first electronic computer 1946-49

Executing Algorithms and more

Steve Jobs and Steve Wozniack
1977 – the pc was born (Apple)

Tim Berners-Lee
1980 – the web was born

Larry Page and Sergey Brin
1998 – Google was born

Jeff Bezos
2003 – Amazon was born

Mark Zuckerberg
2004 – Facebook was born

Sam Altman
2022 – ChatGPT
was born

http://en.wikipedia.org/wiki/Image:BrinSergey_7k.jpg
http://en.wikipedia.org/wiki/Image:Larry_Page.jpg

Inventing the computer

1946-1950 - New York Times: «Electronic computer flashes answers, may speed

Engineering». ENIAC, EDVAC, programming tools, the Association for Computing

Machinery, the commercialization of computing

The computer becomes a scientific supertool

1952-1971 - the first scientific computers, IBM 701, 704 and successors, floating

point numbers, early compilers, Fortran, Algol, IBM 7070, CDC 6600, Cray 1

The computer becomes a data processing device

1951-1974 - the first administrative computers, IBM 700 big business computers,

IBM’s Big Hit: small computers, IBM 650, IBM 1401, sorting and report generation,

Cobol, IBM 360, dreams of a management revolution, total integrated management

system, database management systems, creation of the software industry

A brief history of Computing

A brief history of Computing
The computer becomes a real-time control system

1950-1970 - the Cold War project at MIT, SAGE network, NASA mission control,

miniaturization: missiles and minicomputers, Digital Equipment Corporation and PDP,

integrated circuits, chips for Apollo, system and software reliability

The computer becomes an interactive tool

1961-1971 - Spacewar the first game on MIT’s PDP-1, Timesharing operating systems,

terminals, software engineering, the NATO conference on software engineering,

Unix

The computer becomes a communication platform

1965-1981 - Communication and collaborating on timesharing systems, electronic

mail at MIT, Plato and the beginning of computer aided instruction, ARPANET and

packet switching, internetworking, TCP and IP, commercial networks and online

services, Videotex and Minitel. Internet commercialization, Domain Name System

A brief history of Computing
The computer becomes a personal plaything

1975-1980 - electronic calculator, HP programmable pocket calculator,

microprocessors and Gordon Moore, Altair 8800 the first personal (micro) computer,

expandability and modularity, mass market personal computers, Commodore, Apple

and Tandy, videogames, the Atari VCS console, Apple II, computers come home

The computer becomes office equipment

1981-1990 - IBM’s pc, Apple II pc, personal computers for business, word processing,

Visicalc and spreadsheet programs, PC-DOS, the IBM pc becomes an industry, MS-

DOS, cloning the IBM pc, Ethernet for local area networks, portable pc

The computer becomes a graphical tool

1984-1995 - Apple MacIntosh, Graphical User Interface, Xerox invents graphical

computing, Smalltalk and object-oriented programming, what-you-see-is-what-you-

get, GUI on pc, Graphics workstations

A brief history of Computing
The computer becomes a minicomputer

1990-2000 - moving beyond DOS, Windows 3, Windows begins to dominate,

Microdsoft Office, relational databse management systems, Client Server

applications, graphical laptops, RISC servers

The computer becomes a universal media device

1985-2010 - origins of digital media, multimedia, the Media Lab at MIT, computerizing

music and speech, sampling and digital recordings, digitizing music, compact discs,

CD-Roms, digitizing images, document transmission by fax, scanners, digital cameras,

digital videos, digital television, downloading music, music players, graphics and

games, virtual realitiy, 3D graphics accelerator and 3D games, 3D comes to game

consoles

The computer becomes a publishing platform

1995-2004 - the World Wide Web, hypertext, graphical web browser, Internet server

providers, web publishing, web payments, advertising, Google and Search advertising,

encryption, the browser war, Linux, the triumph of open source

A brief history of Computing

The computer becomes a network

2004-now - Data centers, the Cloud, multiple core processors, virtualization,

streaming video, socila media, Facebook and advertising triumphant, Craiglist and

Wikipedia, subscription and cloud storage

The computer becomes is everywhere and nowhere

2000-now - specialized mobile devices, handheld computers, pen computers,

cellphones, pagers and beepers, GPS navigation systems, the Iphone, the Apple store,

the mobile cloud, voice controlled assistants, tablets, evolution of smartphone,

Android, smartphones and developing world, the Internet of Things in which everyday

objects are equipped with internet connectivity, enabling them to send and receive

data

this has led to new forms of technology interaction and paved the way for new

services and business models

A brief history of Computing

Epilogue: a Tesla in the Valley

Silicon Valley and disruptive innovation, the convergence of cars and computers, the

Tesla model S

Tesla model S is equipped with nearly 60 on board computers

a powerful computer with a 3-core processor with a17-inch touch screen and

for infotainment

a computer with AI specific for Autopilot and self-driving features

embedded computers for:

air suspension, parking brake, rear-view camera, power seats, wipers and rain, control

each door, control radio signal from cellphone, 16 computers to control batteries,

Controller Area Network, cellular data connection for system updates and traffic

information, control of several cameras, radar and sonar systems for Autopilot

A brief history of Computing

Elon Mask: «Tesla is a Silicon Valley software company as much as it is a

hardware company»

Technological evolution is not a linear or predetermined process.

Rather, it is the result of a complex interaction between

technological innovation, social and cultural context, and the

decisions of individuals, companies, and governments

• miniaturization
• connectivity

✓ more computing power
✓ greater storage capacity
✓ easy access to computing power and big data availability

lines of technological development

Some basic terminology

G (iga) =109 T (era) =1012

P (eta) =1015 E (xa) =1018

Z (etta) = 1021 Y (otta) =1024

Tbyte (Terabyte) =1012 byte
Pflops (Petaflops) =1015 floating-point operations per second
Eops (Exaops) =1018 operations per second

how big is number 1020 ?

www.wolframalpha.com

number of people who have ever lived on Earth

1.085x1011 (people)

[as estimate for the year 2017 by the Population Reference Bureau, which

assumes homo sapiens appeared about 50,000 B.C.]

How big are big numbers ?

hypotesis: about half of life spent talking, with a rapidity of 5 characters per

second. Then, all humans who have lived on Earth have uttered altogether

about 5x1020 characters; that is 500 Exabytes allow you to memorize

all the words spoken by mankind

hypothesis: average life of 60 years convert

60 years to seconds

1.892 x109 (seconds)

how big is number 1020 ?

How big are big numbers ?

Chat GPT prompt:
Estimate the number of bytes required to store every word spoken by humans since the origin of
Homo sapiens

How big are big numbers ?

a common format for storing speech is MP3, which can be compressed down to about 128 kilobits
per second (kbps) for decent quality. In bytes, this is 128 / 8 = 16 kilobytes (KB) per second.

Let's consider an average lifespan of 50 years for simplicity (though this varies significantly
throughout human history and across different regions). If we assume that each person
speaks for about an hour a day, then each person would generate about 1 hour * 60
minutes/hour * 60 seconds/minute = 3600 seconds of speech per day. Over a 50-year
lifespan, this would amount to 50 years * 365 days/year * 3600 seconds/day = 65,700,000
seconds of speech

Chat GPT prompt:
Estimate the number of bytes required to store every word spoken by humans since the origin of
Homo sapiens

How big are big numbers ?

if we consider that Homo sapiens have been around for roughly 300,000 years, and assume a
constant global population of 1 billion people (which is a significant underestimate for recent
centuries but an overestimate for most of human history), we get a total of about 300,000
years * 1 billion people * 65,700,000 seconds/person = 1.971 * 10^24 seconds of speech.
Finally, multiplying this by the storage required for one second of speech gives us: 1.971 *
10^24 seconds * 16 KB/second = 3.1536 * 10^28 kilobytes. Converting this to more
manageable units, we get approximately 3.1536 * 10^22 gigabytes, or 3.1536 * 10^13
exabytes

Chat GPT prompt:

I believe your previous estimate is indeed likely too high

How big are big numbers ?

Let's try another approach. Consider an average word to be 5 characters long. In ASCII, each
character is 1 byte, so each word is approximately 5 bytes.
Assuming an average talking speed of about 125 words per minute, if we hypothesize that
each person talks for about 2 hours each day, then the number of words spoken by a single
person in a day would be: 125 words/minute * 60 minutes/hour * 2 hours/day = 15,000
words/day. Now, let's consider Homo sapiens have been around for roughly 50,000 years. If
we assume an average lifespan of 30 years (which is more realistic when considering early
Homo sapiens), the total number of words spoken by a person in their lifetime would be:
15,000 words/day * 365.25 days/year * 30 years = 164,287,500 words

Chat GPT prompt:

I believe your previous estimate is indeed likely too high

How big are big numbers ?

Assuming a constant global population of 100 million people (a rough estimate that might
balance out the smaller populations in the past and the larger ones in the present), the total
number of words spoken by all people throughout history would be:
164,287,500 words/person * 100,000,000 people * (50,000 years / 30 years) ≈ 2.74 * 10^20
words

The total storage required in bytes would then be:
2.74 * 10^20 words * 5 bytes/word = 1.37 * 10^21 bytes = 1.37 Zettabytes

How good is an algorithm ?

efficiency of an algorithm

time and memory of a computer are

computing resources

the performance evaluation of a program is the

quantification of the use of the computing resources

necessary for its execution

How good is an algorithm ?

the total number of operations and data of an

algorithm is proportional to the time and memory

required for the execution of the program that

implements the algorithm on a specific computer

computational complexity of an algorithm

determine the amount of resources for the execution of an algorithm

How good is an algorithm ?

computational complexity of an algorithmcomputational complexity of an algorithm

performance of the program (software)

that implements the algorithm

performance of the program (software)

that implements the algorithm

impact impact

computer

architecture

programming

language

How good is an algorithm ?

number of input data

=

computational dimension (or input size) of the (instance of the) problem

number of input data

=

computational dimension (or input size) of the (instance of the) problem

the total number of operations to be executed by an algorithm depends on the

number of input data

when the computational dimension of a problem grows,

how do the number of operations (execution time) and the number of data

(memory) of the algorithm change ?

when the computational dimension of a problem grows,

how do the number of operations (execution time) and the number of data

(memory) of the algorithm change ?

How good is an algorithm ?

➢ time complexity of an algorithm

➢ space complexity of an algorithm
➢ inherent difficulty of a problem

➢ time complexity of an algorithm

➢ space complexity of an algorithm
➢ inherent difficulty of a problem

Computational Complexity Theory investigates issues related to the amount of

resources required for the execution of algorithms and the inherent difficulty of

providing efficient algorithms to solve specific problems

Computational Complexity Theory investigates issues related to the amount of

resources required for the execution of algorithms and the inherent difficulty of

providing efficient algorithms to solve specific problems

to classify
algorithms and problems in complexity classes

to classify
algorithms and problems in complexity classes

How good is an algorithm ?

▪ identify the computational dimension of the problem

▪ identify the dominant operation (or dominant operations) of the algorithm

▪ identify the computational dimension of the problem

▪ identify the dominant operation (or dominant operations) of the algorithm

time complexity of an algorithm

the time complexity function T(n)
of an algorithm is a function that expresses the number of dominant

operations depending on the computational dimension n of the problem

the time complexity function T(n)
of an algorithm is a function that expresses the number of dominant

operations depending on the computational dimension n of the problem

How good is an algorithm ?

▪ identify the computational dimension of the problem ▪ identify the computational dimension of the problem

space complexity of an algorithm

the space complexity function S (n) of an algorithm is the function that

expresses the total size of the data structures used to store input, local and

output data, depending on the computational dimension n of the problem

the space complexity function S (n) of an algorithm is the function that

expresses the total size of the data structures used to store input, local and

output data, depending on the computational dimension n of the problem

How good is an algorithm ?

may also depend on

input data values

may also depend on

input data values

time and space complexity of an algorithm

worst case

time complexity and space complexity

worst case

time complexity and space complexity

Time complexity of algorithms

for i in range (n):
q dominant operations

for i in range (n):
q dominant operations

time complexity T(n) = qn
that is

T(n) is proportional to n

time complexity T(n) = 2qn
that is

T(n) is proportional to 2n
(proportional to n)

for i in range(n):
q dominant operations

for j in range (n):
q dominant operations

for i in range(n):
q dominant operations

for j in range (n):
q dominant operations

LINEAR

time complexity

Time complexity of algorithms LINEAR

time complexity

scalar by vector (multiple of a vector)

() ()T n n O n= =
x

y

,nx R R 

ny x R= 

1:i iy x i n= =

Time complexity of algorithms LINEAR

time complexity

sum of vectors

() ()T n n O n= =

nyx ,

nz x y R= + 

1:i i iz x y i n= + =

x
y

z

yx −

why vectors are so important?
a vector is a mathematical concept that represents a quantity or object in a multi-dimensional space. It can be used to
represent various types of data, such as documents, human behaviors, and images, allowing for quantitative evaluation of
similarity and commonalities among them

Document representation: vectors can be used to create text models based on word frequencies or other attributes. For
example, a vector can be constructed where each dimension represents a word in the vocabulary, and the value associated
with that dimension is the frequency of that word in the document

Human behaviors: vectors can be used to represent actions, preferences, or characteristic traits of a person. For example,
vectors can be used to represent a person's musical preferences, where each dimension represents a music genre, and the
value associated with that dimension indicates the interest or preference for that genre

Images: vectors can be used to represent the visual features of an image or the content of each pixel of an image (raster).
Image analysis can extract various attributes such as color, shape, texture, and object arrangements in the image. These
attributes can be represented as a vector, where each dimension corresponds to an attribute, and the value associated with
that dimension indicates the intensity or presence of that attribute in the image

why vectors are so important?

vectors can be used to create buyer profiles. In the field of marketing and consumer analysis, vectors can represent the
characteristics, preferences, and behaviors of buyers. These vectors can be created using different dimensions, such as:

Demographics: vectors can include demographic attributes such as age, gender, income, geographic location, marital status,
and more

Purchase preferences: vectors can represent buyers' purchase preferences, such as preferred product categories, favorite
brands, preferred purchase channels (online or physical stores), price sensitivity level, and so on

Online behavior: vectors can be created using digital data like social media interactions, past online purchases, online
searches, ad clicks, and other online activities. This data can be used to create a behavioral profile of buyers

Feedback and reviews: vectors can incorporate information derived from product reviews or buyer feedback. For example,
ratings and opinions expressed by buyers can be represented as attributes within the vectors

why vectors are so important?

Once buyer profile vectors are created, they can be used for various purposes, such as:

Market segmentation: vectors can be used to group buyers into homogeneous segments based on their common
characteristics and preferences. This can help develop targeted marketing strategies for each segment

Personalized recommendations: buyer profile vectors can be used to generate personalized recommendations of products
or services. By relying on similar buyer profile vectors, products or offers that may interest a specific buyer can be suggested

Future behavior prediction: analysis of buyer profile vectors can contribute to predicting future buyer behavior, such as the
likelihood of purchasing certain products, brand loyalty, or participation in loyalty programs

Time complexity of algorithms LINEAR

time complexity

dot (scalar) product of vectors
, nx y R

𝑠 = 𝑥𝑇𝑦 ∈ 𝑅

1

n

i i

i

s x y
=

==

() ()nOnnT == 2

Time complexity of algorithms LINEAR

time complexity

the Euclidean norm (norm 2) of a vector is the geometric length of a vector

() ()nOnnT == 2

22

2

2

12 nxxxx +++= 

xxx T=
2

x
x2

x1

Time complexity of algorithms LINEAR

time complexity

angle between two vectors

x

y 

()cos
22

yxyxT = ()
22

cos
yx

yxT

=

yxyxT ⊥= 0

the dot product of two vectors is a

useful tool for understanding the

relationship between vectors

Time complexity of algorithms LINEAR

time complexity

orthogonal projection ()cos
22

yxyxT = ()
22

cos
yx

yxT

=

x

y 

𝑥 2 cos 𝜗 = length of orth projection of 𝑥 onto 𝑦

the dot product of two vectors is a

useful tool for understanding the

relationship between vectors

Time complexity of algorithms LINEAR

time complexity

orthogonal projection ()cos
22

yxyxT = ()
22

cos
yx

yxT

=

𝑦 2 cos 𝜗 = length of orth projection of 𝑦 onto 𝑥

x

y 
the dot product of two vectors is a

useful tool for understanding the

relationship between vectors

Time complexity of algorithms LINEAR

time complexity

()cos
22

yxyxT = ()
22

cos
yx

yxT

=

x

y 
the dot product tells us how much of one vector is
in the direction of the other vector

cos 𝜗 is a measure of similarity between the two vectors

0 implies no similarity (perpendicularity)

1 implies maximum similarity (same direction, same verse)

-1 implies maximum opposition (same direction, opposite direction)

Time complexity of algorithms

QUADRATIC

time complexity

for i in range (n):
for j in range (n):

q dominant operations

for i in range (n):
for j in range (n):

q dominant operations

for i in range (n):
for j in range (i,n):

q dominant operations

for i in range (n):
for j in range (i,n):

q dominant operations

time complexity

T(n) = q n2

that is

T(n) is proportional to n2

time complexity
T(n) = q(1+2+3+…+n)

= qn(n+1)/2
that is

T(n) is proportional to n2

Time complexity of algorithms QUADRATIC

time complexity

product of matrix by vector
,m n nA R v R 

𝑧 = 𝐴𝑣 ∈ 𝑅𝑚

() () (), 2 1T m n m n O mn= − =

() ()2 22T n n n O n= − =

mivaz
n

j

jiji :1,
1

==
=

=

Time complexity of algorithms QUADRATIC

time complexity

product of matrix by vector

() swrv

srwv

 +→+

→→

the product of a matrix times a vector is a linear
transformation of one vector into another vector

a linear transformation has the property of preserving
the result of a sum of two vectors and a multiplication of
a scalar by a vector (multiple of a vector)

=

Time complexity of algorithms QUADRATIC

time complexity

rotation

scaling

shearing

leaves all points on an axis unchanged; the other points are translated parallel to

the axis in proportion to their distance from the axis (preserves areas)

each pixel is a vector

http://en.wikipedia.org/wiki/File:Eigen.jpg

Time complexity of algorithms QUADRATIC

time complexity

pitch
3D rotation around the
wing axis (x-axis)

Time complexity of algorithms QUADRATIC

time complexity

roll
3D rotation around the
longitudinal axis (y-axis)

Time complexity of algorithms QUADRATIC

time complexity

yaw
3D rotation around the
vertical axis (z-axis)

Time complexity of algorithms

CUBIC

time complexity

for i in range (n):
for j in range (n):

for k in range (n):
q dominant operations

for i in range (n):
for j in range (n):

for k in range (n):
q dominant operations

time complexity T(n) = q n3

that is

T(n) is proportional to n3

Time complexity of algorithms CUBIC

time complexity

product of two matrices

=

the product of two matrices is
the combination of two linear
transformations

𝐴 ∈ 𝑅𝑚×𝑛, 𝐵 ∈ 𝑅𝑛×𝑝

𝐶 = 𝐴𝐵 ∈ 𝑅𝑚×𝑝

𝑇 𝑚, 𝑛, 𝑝 = 2𝑚𝑛𝑝 = 𝑂 𝑚𝑛𝑝

𝑇 𝑛 = 2𝑛3 = 𝑂 𝑛3

Time complexity of algorithms CUBIC

time complexity

solution of a linear system of equations

=

𝐴 ∈ 𝑅𝑛×𝑛, 𝑏 ∈ 𝑅𝑛

𝐴𝑥 = 𝑏, 𝑥 ∈ 𝑅𝑛

𝑇 𝑛 = 𝑛3/3 = 𝑂 𝑛3

Time complexity of algorithms CUBIC

time complexity

solution of an overdetermined linear system of equations (regression)

=

𝐴 ∈ 𝑅𝑚×𝑛, 𝑏 ∈ 𝑅𝑚

𝐴𝑥 = 𝑏, 𝑥 ∈ 𝑅𝑛

𝑇 𝑚, 𝑛 = 𝑂 𝑚𝑛2/2

Time complexity of algorithms

LOGARITHMIC

time complexity

time complexity T(n) = qlog2n
that is

T(n) is proportional to log2n

i = 0
while 2**i < n:

i = i+1
q dominant operations

i = 0
while 2**i < n:

i = i+1
q dominant operations

i = n
while i >= 1:

i = i/2
q dominant operations

i = n
while i >= 1:

i = i/2
q dominant operations

Time complexity of algorithms

n power of 2: log2(n) times

how many times can you divide an array of size n in half?

n=8

in general: smallest integer greater than log2(n) times

LOGARITHMIC

time complexity

Time complexity of algorithms
LOGARITHMIC

time complexity

Binary search is a search algorithm used to find a specific target value within a sorted list

1. Start by defining the target value you want to find in the sorted list
2. Identify the middle element of the sorted list
3. Compare the middle element with the target value:

a) If the middle element is equal to the target value, the search is successful, and you can return the
index of the middle element

b) If the middle element is greater than the target value, the target value must be in the left half of
the sorted list. Repeat the process starting from step 2 on the left half of the list

c) If the middle element is less than the target value, the target value must be in the right half of the
sorted list. Repeat the process starting from step 2 on the right half of the list

4. Repeat steps 2 and 3, dividing the search range in half each time, until the target value is found, or the
search range becomes empty (indicating that the target value is not present in the list)

Time complexity of algorithms
LOGARITHMIC

time complexity

Suppose we have a sorted list of numbers: [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]

1. we want to find the target value 9 within this list
2. we start by identifying the middle element of the list, which is 11
3. since 9 is less than 11, we know that the target value must be in the left half of the list. So, we discard

the right half ([13, 15, 17, 19]) and focus on the left half ([1, 3, 5, 7, 9])
4. we repeat the process. The middle element of the left half is 5. Since 9 is greater than 5, we discard the

left half ([1, 3, 5]) and focus on the right half ([7, 9])
5. we repeat the process again. The middle element of the right half is 9, which is the target value we were

searching for. The search is successful, and we return the index of the middle element, which is 4

in this example, the binary search algorithm found the target value 9 at index 4 of the sorted list

Time complexity of algorithms

LIN-LOG

time complexityn power of 2: n log2(n) operations

algorithms that carry out log2(n) steps and at each step execute

n dominant operations

n =8
time complexity T(n) = n log2n
that is

T(n) is proportional to n log2n

Time complexity of algorithms LIN-LOG

time complexity

Merge sort is a popular sorting algorithm that follows the divide-and-conquer approach. Here's a
quick overview of how Merge sort works:
1. Divide: the unsorted list is recursively divided into smaller sublists until each sublist contains

only one element or is empty
2. Conquer: the sublists are then merged back together in a sorted order. This is done by

repeatedly comparing and merging pairs of sublists until a single sorted list is obtained
3. Merge: during the merge step, two sublists are compared element by element, and the

smaller element is placed into a new resulting list. This process continues until all
elements from both sublists are merged into the final sorted list

4. The resulting sorted list is the output of the Merge sort algorithm

Time complexity of algorithms LIN-LOG

time complexity

Suppose we have an unsorted list: [5, 3, 8, 2, 1, 6]

1. Divide: the list is divided into sublists: [5, 3, 8] and [2, 1, 6]
2. Conquer: each sublist is further divided until we have single-element sublists: [5], [3], [8], [2], [1], [6]
3. Merge: the single-element sublists are then merged back together in sorted order

first, we compare and merge [5] with [3] to get [3, 5].
then, we compare and merge [8] with [2] to get [2, 8]
next, we compare and merge [1] with [6] to get [1, 6]
now, we compare and merge [3, 5] with [2, 8] to get [2, 3, 5, 8]
finally, we compare and merge [1, 6] with [2, 3, 5, 8] to get the fully sorted list: [1, 2, 3, 5, 6, 8]

4. The sorted list [1, 2, 3, 5, 6, 8] is the output of the Merge sort algorithm

Time complexity of algorithms

information on the time complexity of an algorithm can be obtained

experimentally, by executing a program that implements the algorithm

information on the time complexity of an algorithm can be obtained

experimentally, by executing a program that implements the algorithm

run the program to solve the problem of dimensione n, and
then 2n,4n,8n,16n

and finally analyze the execution times

n
execution

time

(sec)

increasing factor of time

execution

(current / previous)

Time complexity of algorithms

n
execution

time

(sec)

increasing factor of time

execution

(current / previous)

1000

2000

4000

8000

16000

0.0408

0.0201

0.0793

0.1611

0.3182

2.004

1.967

2.031

1.975

Time complexity of algorithms

increasing factor almost constant and approximately equal to 2increasing factor almost constant and approximately equal to 2

if you double the dimension

the execution time doubles

if you double the dimension

the execution time doubles

time complexity T(n) of the algorithm is proportional to ntime complexity T(n) of the algorithm is proportional to n

Time complexity of algorithms

then:

if the time complexity T(n) of the algorithm is proportional to nif the time complexity T(n) of the algorithm is proportional to n ()T n n= ()T n n= 

()

(2) 2

T n n

T n n





= 

= 

()

(2) 2

T n n

T n n





= 

= 

and it must hold that:
(2) 2

()
2

T n n

T n n






= =



(2) 2

()
2

T n n

T n n






= =



Time complexity of algorithms

then:

if the time complexity T(n) of the algorithm is proportional to n2if the time complexity T(n) of the algorithm is proportional to n2

and it must hold that:

2()T n n=  2()T n n= 

()

2

2 2

()

(2) 2 4

T n n

T n n n



 

= 

=  = ()

2

2 2

()

(2) 2 4

T n n

T n n n



 

= 

=  = 

2

2

(2) 4

(
4

)

T n n

T n n






= =



2

2

(2) 4

(
4

)

T n n

T n n






= =



Time complexity of algorithms

then:

if the time complexity T(n) of the algorithm is proportional to n3if the time complexity T(n) of the algorithm is proportional to n3

and it must hold that:

3()T n n=  3()T n n= 

()

3

3 3

()

(2) 2 8

T n n

T n n n



 

= 

=  = ()

3

3 3

()

(2) 2 8

T n n

T n n n



 

= 

=  = 

3

3

(2) 8

(
8

)

T n n

T n n






= =



3

3

(2) 8

(
8

)

T n n

T n n






= =



Time complexity of algorithms

increasing factor of time

execution, doubling the

computational dimension

presumable form of

time complexity

proportional to n

proportional to n2

proportional to n3

proportional to n4

2

4

8

16

time complexity

proportional to a

POWER of n

POLYNOMIAL

complexity

POLYNOMIAL

complexity

Asymptotic time complexity of algorithms

Let T(n) and g(n) be two non negative and non decreasing functions, then

𝑇(𝑛) = 𝑂 𝑔 𝑛𝑇(𝑛) = 𝑂 𝑔 𝑛

𝑇(𝑛) ≤ 𝑐𝑔(𝑛)𝑇(𝑛) ≤ 𝑐𝑔(𝑛)

if there are two positive constants c and N0 such that:

0n N 0n N

T is of the order of g

Asymptotic time complexity of algorithms

cg(n)

T(n)

N0
n

the curve T (n) stays below

(or coincides) the curve cg(n),

starting from N0

𝑇(𝑛) = 𝑂 𝑔 𝑛𝑇(𝑛) = 𝑂 𝑔 𝑛

Asymptotic time complexity of algorithms

f (n) = ain
i

i =0

p



that is, T(n) is a polynomial of degree p then:

Exercise: if

𝑇(𝑛) = 𝑂 𝑛𝑝

Exercise: if T(n) = 2n2 + 3n + 5 then: 𝑇(𝑛) = 𝑂 𝑛2

𝑇(𝑛) = 𝑂 𝑔 𝑛𝑇(𝑛) = 𝑂 𝑔 𝑛

Asymptotic time complexity of algorithms

Exercise: give a function T (n) such that

T (n) = O(1)

Exercise: yes or no:

n = O(n2)

𝑇(𝑛) = 𝑂 𝑔 𝑛𝑇(𝑛) = 𝑂 𝑔 𝑛

Complexity classes
O 1() constant

O log 2 n() logarithmic

O n() linear

O n log2 n() lin-log

O n
2() quadratic

O n
k() polynomial of degree k

O 2
n() exponential

O n!() factorial

T(n) =

T(n) =

T(n) =

T(n) =

T(n) =

T(n) =

T(n) =

T(n) =

dimensions of problems

that can be solved,

with a 100 Mops/sec
computer

complexity 1 sec 1 minute 1 hour

108 6109 3.61011

4106 2108 11010

104 77459 6105

26 32 38

11 12 14

O n()
O n log2 n()
O n

2()
O 2

n()
O n!()

in WolframAlpha: solve 10^(-8)*x^2=60

Can we always design an algorithm to solve any problem?

Can we always design an algorithm to solve any problem?

complexity 1 sec 1 minute 1 hour

1012 61013 3.61015

2.5 1010 1.4 1012  7.51013

106 7.7106 6107

35 45 51

14 16 17

O n()
O n log2 n()
O n

2()
O 2

n()
O n!()

in WolframAlpha: solve 10^(-12)*2^x=60

dimensions of

problems that can be

solved,

with a 1000000
Mops/sec computer

Can we always design an algorithm to solve any problem?

algorithms that can be used for effective problem solving

polynomial time complexity algorithmspolynomial time complexity algorithms

exponential/factorial time complexity algorithms

cannot be used

in any practical problem solving

Can we always design an algorithm to solve any problem?

exponential/factorial time complexity algorithms cannot be used

in any practical problem solving

✓ algorithm of factorial time complexity,

✓ computer which executes 1 operazione in 10-12 sec,

✓ problem of computational dimensione 100

✓ algorithm of factorial time complexity,

✓ computer which executes 1 operazione in 10-12 sec,

✓ problem of computational dimensione 100

total execution time : 10138 yearstotal execution time : 10138 years

in WolframAlpha:
10^(-12)*factorial(100)/(86400*365)

Are there problems solved only by exponential/factorial
time complexity algorithms ?

TSP, travelling salesman problem

given a set of cities and travel costs, from any city to any other city, determine the

cheapest route that allows you to visit each city exactly once and then return to the

city of departure

given a set of cities and travel costs, from any city to any other city, determine the

cheapest route that allows you to visit each city exactly once and then return to the

city of departure

city

road

() ()!nOnT =

Are there problems solved only by exponential/factorial
time complexity algorithms ?

TSP, travelling salesman problem
city

road

() ()!nOnT =

the only known algorithm that solves this problem is a brute force algorithm that

computes all possible routes and determines the cheapest one

the number of possible routes is equal to the number of the permutations of n cities

Algorithms ARE technology

problem of

computational

dimension n=107

algorithm of

quadratic complexity
algorithm of

lin-log complexity

10000 Mops/sec 100 Mops/sec

107  log2 107

108 operationis/sec

=2 sec

(107)2 operations

1010 operations/sec

=104 sec

computer power

execution time

Scalability of algorithms

Scalability is a key concept in processing large-scale problems in various fields, including
science, economics, and artificial intelligence

Scalability refers to an algorithm's ability to efficiently handle an increase in the size of
the problem

in terms of high-performance computing, a "scalable" algorithm is one that can effectively
leverage a growing number of processing units to solve larger problems or solve problems
at the same speed or faster

Scalability of algorithms
1. Science: many scientific problems require large-scale computation. For example, simulating

physical systems, like Earth's climate or the behavior of subatomic particles, requires massive

amounts of computing power. The algorithms used in these simulations must be highly scalable to

handle the complexity and size of the data. For instance, discretization methods like finite

differences, finite elements, and finite volumes are often used to solve large-scale partial

differential equations that model these physical systems

2. Artificial Intelligence: many machine learning algorithms need to handle large amounts of data.

Deep learning algorithms, such as convolutional neural networks (CNN) for image recognition or

recurrent neural networks (RNN) for natural language processing, must be highly scalable.

Stochastic gradient descent (SGD) is an example of a scalable optimization algorithm used in deep

learning. Similarly, tree-based methods can be scaled to handle large data sets

Scalability of algorithms
3. Economics: in economic and financial analysis, large-scale optimization algorithms are often

needed. For instance, in portfolio risk management, one might want to minimize the risk of a

portfolio of thousands or even millions of assets

linear and convex quadratic programming algorithms are commonly used in these cases

algorithms such as the simplex method, interior point method, and gradient methods are scalable

and can handle problems of significant size

to achieve scalability, problems can be broken down into smaller

sub-problems that can be solved in parallel

this approach underpins parallel / distributed computing and GPU

computing, which are key techniques for scalability in HPC and AI

underpins

More on Scalability

Scalability is not just about algorithms, but also about system architecture

For example, a distributed database needs to be carefully designed to ensure that it can scale with

increasing data size and query load

Scalability in system architecture refers to the ability of the system to handle increased load by

adding resources, typically in the form of hardware like servers or storage

two main types of scalability exist: vertical (or scaling up) and horizontal (or scaling out)

More on Scalability
Vertical Scaling: this involves increasing the capacity of a single machine in the system, such as

adding more powerful processors, more memory, or more storage. Vertical scaling can be a simple

and effective way to increase system performance, but it has its limitations. There is usually a

physical limit to how much you can scale up a single machine, and high-performance hardware can

be expensive. Additionally, a system that relies on a single powerful machine can have a single

point of failure, which can be a risk for system reliability

Horizontal Scaling: this involves adding more machines to the system to distribute the load. Each

machine handles a part of the overall workload, and the load balancer is typically used to distribute

requests among the machines. Horizontal scaling can provide a high degree of scalability and can

be more cost-effective than vertical scaling, as it can take advantage of less expensive commodity

hardware. However, not all applications can be easily distributed across multiple machines. Also,

managing a large number of machines can add complexity to system management, including

challenges with data consistency and coordination between servers

More on Scalability
a third approach, called diagonal scaling, combines elements of both vertical and horizontal

scaling. In diagonal scaling, new machines are added to the system (like horizontal scaling), and the

capacity of each machine is increased over time (like vertical scaling)

in addition to these, the rise of cloud computing has introduced the concept of elastic scaling,

where resources are added or removed on demand based on the current workload. This can

provide cost savings, as you only pay for the resources you use, and can ensure that the system can

handle peaks in demand

another important aspect of scalable system architecture is the design of the software itself

software must be designed to take advantage of multiple processors (through multithreading or multiprocessing) and

multiple machines (through distributed computing techniques)

this often involves considerations of data partitioning, replication, consistency, and fault tolerance

More on Scalability

✓ computing power is becoming a bottleneck for developing AI

✓ estimated training time of ChatGPT-3 is nearly 288 years on a single V100 Nvidia GPU

✓ the current cost (March 2023) of running ChatGPT is $100,000 per day

✓ Microsoft’s Azure cloud is hosting ChatGPT so that OpenAI does not have to invest in a physical server

room (partially true!)

✓ considering Microsoft’s current rates, it is $3 an hour for a single A100 GPU, and each word generated on

ChatGPT costs $0.0003

✓ at least eight GPUs are in use to operate on a single ChatGPT query

✓ so, when ChatGPT generates an average response of 30 words, it will cost nearly 1 cent for the company

✓ through such an estimation, OpenAI could be spending at least $100K per day or $3 million monthly on

running costs

www.meim.uniparthenope. i t

High Performance Computing

……. to be continued

MASTER MEIM 2022-2023

	Diapositiva 1
	Diapositiva 2: Algorithms are old stuff
	Diapositiva 3: Algorithms are old stuff
	Diapositiva 4: Reflection on the speed of humanity's evolution
	Diapositiva 5: Reflection on the speed of humanity's evolution
	Diapositiva 6: Algorithms are old stuff
	Diapositiva 7: Algorithms are old stuff
	Diapositiva 8: Executing Algorithms
	Diapositiva 9: Executing Algorithms
	Diapositiva 10: Executing Algorithms
	Diapositiva 11: Executing Algorithms
	Diapositiva 12: Executing Algorithms
	Diapositiva 13: Executing Algorithms and more
	Diapositiva 14
	Diapositiva 15: A brief history of Computing
	Diapositiva 16: A brief history of Computing
	Diapositiva 17: A brief history of Computing
	Diapositiva 18: A brief history of Computing
	Diapositiva 19: A brief history of Computing
	Diapositiva 20: A brief history of Computing
	Diapositiva 21: lines of technological development
	Diapositiva 22: Some basic terminology
	Diapositiva 23: How big are big numbers ?
	Diapositiva 24: How big are big numbers ?
	Diapositiva 25: How big are big numbers ?
	Diapositiva 26: How big are big numbers ?
	Diapositiva 27: How big are big numbers ?
	Diapositiva 28: How big are big numbers ?
	Diapositiva 29: How good is an algorithm ?
	Diapositiva 30: How good is an algorithm ?
	Diapositiva 31: How good is an algorithm ?
	Diapositiva 32: How good is an algorithm ?
	Diapositiva 33: How good is an algorithm ?
	Diapositiva 34: How good is an algorithm ?
	Diapositiva 35: How good is an algorithm ?
	Diapositiva 36: How good is an algorithm ?
	Diapositiva 37: Time complexity of algorithms
	Diapositiva 38: Time complexity of algorithms
	Diapositiva 39: Time complexity of algorithms
	Diapositiva 40: why vectors are so important?
	Diapositiva 41: why vectors are so important?
	Diapositiva 42: why vectors are so important?
	Diapositiva 43: Time complexity of algorithms
	Diapositiva 44: Time complexity of algorithms
	Diapositiva 45: Time complexity of algorithms
	Diapositiva 46: Time complexity of algorithms
	Diapositiva 47: Time complexity of algorithms
	Diapositiva 48: Time complexity of algorithms
	Diapositiva 49: Time complexity of algorithms
	Diapositiva 50: Time complexity of algorithms
	Diapositiva 51: Time complexity of algorithms
	Diapositiva 52: Time complexity of algorithms
	Diapositiva 53: Time complexity of algorithms
	Diapositiva 54: Time complexity of algorithms
	Diapositiva 55: Time complexity of algorithms
	Diapositiva 56: Time complexity of algorithms
	Diapositiva 57: Time complexity of algorithms
	Diapositiva 58: Time complexity of algorithms
	Diapositiva 59: Time complexity of algorithms
	Diapositiva 60: Time complexity of algorithms
	Diapositiva 61: Time complexity of algorithms
	Diapositiva 62: Time complexity of algorithms
	Diapositiva 63: Time complexity of algorithms
	Diapositiva 64: Time complexity of algorithms
	Diapositiva 65: Time complexity of algorithms
	Diapositiva 66: Time complexity of algorithms
	Diapositiva 67: Time complexity of algorithms
	Diapositiva 68: Time complexity of algorithms
	Diapositiva 69: Time complexity of algorithms
	Diapositiva 70: Time complexity of algorithms
	Diapositiva 71: Time complexity of algorithms
	Diapositiva 72: Time complexity of algorithms
	Diapositiva 73: Time complexity of algorithms
	Diapositiva 74: Asymptotic time complexity of algorithms
	Diapositiva 75: Asymptotic time complexity of algorithms
	Diapositiva 76: Asymptotic time complexity of algorithms
	Diapositiva 77: Asymptotic time complexity of algorithms
	Diapositiva 78: Complexity classes
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85
	Diapositiva 86
	Diapositiva 87
	Diapositiva 88
	Diapositiva 89
	Diapositiva 90
	Diapositiva 91
	Diapositiva 92
	Diapositiva 93

