
Introduction to Machine Learning programming
on Apple devices using CoreML kit.

Apple Foundation Program

Emanuel Di Nardo, PhD
• Many courses (ScuolaSIS - Parthenope)
• Teacher at Apple Foundation Program (Parthenope)
• Contacts: emanuel.dinardo@uniparthenope.it

mailto:emanuel.dinardo@uniparthenope.it

Agenda

- Application Scope
- How to build a dataset
- CreateML in details
- Integrate AI in devices applications

Application Scope

What’s our aim?

• Learn how to collect data

• Images, videos, texts, …

• How many data?

• Diversification

• Augmentation

• Learn how to train and evaluate a model

What’s our aim?

• Learn how to train and evaluate a model

• How many iteration?

• There is a specific algorithm?

• Learning curves…what?

• Results preview

What’s our aim?

• Integrate the model in an iOS application

• Which steps are required before the model can be used in a real-world
application?

•

Hand pose estimation and classification

• Our aim is to estimate the hand pose

• The estimation make us able to perform some tasks

• We want to send commands to an application with our hands

Data collection

Which data can I process in my app?

We need classes!

• Which classes are required in our application?

• Class 1 Finger

• Class 2 Fingers

• Class Thumb Up

Class 1 Finger

Class 2 Fingers

Class Thumb Up

Is it enough?

Is it enough?

NO!

Another class

• We also need background

• It is important to avoid distractions and reduce misclassification

• It is composed

• Random hand position

• Transition hand position

Example
Random hand positions

Example
Transition hand positions (1 Finger)

Example
Transition hand positions (1 Finger)

Example
Transition hand positions (1 Finger)

Example
Transition hand positions (2 Fingers)

Example
Transition hand positions (2 Fingers)

Example
Transition hand positions (2 Fingers)

Example
Transition hand positions (Thumb Up)

Example
Transition hand positions (Thumb Up)

Example
Transition hand positions (Thumb Up)

How many data?

• Deep learning is data hungry

• Many data as possible

• Thankfully Apple uses transfer learning

• It reduces the number of required samples

How many data?

• We try with using about 25/50 samples per class

• To have the same number of data is very important

• Balanced data is a foundation of machine learning

Diversification

• Try to have data that are different from multiple point of view

• Geometrically:

• Scale

• Position

• Rotation

Diversification

• Try to have data that are different from multiple point of view

• Subject:

• Multiple people

• Skin color

• Light condition

• Poses

Is is enough?

• Unfortunately not…

• It is the best to augment data

• It automatically applies many random transformations on the input each at
each iteration

• When a neural network sees the same image with a little difference, it appears
like a totally new and different image!

Some other tricks?

• A lot, but the most important and famous is to shuffle data

• We simply
swiped the
second image
with the first

• It is like a
totally new set
of images to
process!

Challenge (1h)

• Splits in groups and with the help of your device and using the image search
features of web search engine try to collect as many data as possible for each
class (each group can collect a different class to speed up the process)

• Tips:

• Images should have the same size  
and orientation  
(we can be flexible for now)

• Images should have the same  
number of colors  
(avoid to mix grayscale and color images) X

X X

Split data

• Collect data and split the images by class

• Create a Training Data folder

• Inside create a folder for each class

• One

• Two

• Thumb

• Background

Train the model

CreateML

• Open CreateML

• New Project

• Select 
Hand Pose Classification

• Choose a name 
ex. MeiMHandPose

CreateML - Dataset

Put data here

CreateML - Augmentation

Select these items

Click on Train button

CreateML - Train

Click on Train button

• Curves tell us what happened

• In this case we just have Accuracy (usually it is better to check the loss function)

• Training accuracy represents  
how good the model have  
learned from training images

• Validation accuracy tells us  
how the model is able to  
understand images that it  
never saw before  
(this concept is called  
generalization)

CreateML - Learning curves

• Preview helps us to test the machine learning model with new data

• We can also click on “Live Preview” and use  
FaceTime HD Camera to process  
the input video stream

• It prints out the results of each frame 
with the relative score of each action

CreateML - Preview

• Click on Output menu

• Try Xcode button

• To export the model use Get button

CreateML - Output

Xcode

• Xcode is the tools that is used to develop application for any Apple devices

• It is installed on your foundation kit

• Open it and create a new project

Xcode

• Select “App”

Xcode

• Fill all inputs like in the image

• Press Next two times

Xcode
Your project is ready!

Setup the Augmented Reality Camera

• Create a new Swift file (right click on menu list) and call it ARViewContainer

• It will used to show the camera and use the machine learning model

• Remove “Foundation” and import:

• SwiftUI (the base UI library)

• RealityKit

• ARKit (both used for AR)

• Vision (it is needed to recognize hands)

• We get an error, but it is normal

ARViewContainer

Setup the Augmented Reality Camera

• To remove the error, and get the desired result we have to declare an
Augmented Reality View (ARView)

• It is responsible to show camera and do AR stuffs

• We can set a configuration that take care of human body

• Finally the error disappeared!

ARViewContainer

• Good we are near to test our application for the first time!

• Before to try the app it is important to tell to iOS that our choice is to use the
camera

• Click on blu icon, it is the Project Settings file

• Select Info tab and add  
following text:

• Privacy - Camera Usage Description

ARViewContainer

• Are we ready to test the app?

• Unfortunately there is another step

• We need to set the iPhone to be used for Development authorize our profile to
deploy application on it

• Do this step together! (~ 10 minutes)

ARViewContainer

ARHandCaptureCoordinator

• We need to intercept the camera output (also known as frame)

• We need to realize a Coordinator that is able to interface between the camera
output and what we want to obtain

• Let’s create an  
ARHandCaptureCoordinator  
inside the struct

• Very important is to add the 
ARSessionDelegate to  
our new class

ARHandCaptureCoordinator

ARHandCaptureCoordinator
MLModel

• Here we can do a lot of things

• First we have to build the right structure

• Import the mlmodel that you extracted from CreateML

• It is very simple, just drag and drop the file in the file list

• ATTENTION! When it tells you to confirm the operation you need to select
the checkbox Copy item if needed

ARHandCaptureCoordinator
MLModel

• It should be safe

• In the example image it is called MeiMHandPose 1

• The icon is different from other files, it shows the CreateML icon

ARHandCaptureCoordinator
Variables declaration

• Now we can add three variables to the Coordinator that represent

• The model prediction update interval

• Used to get a smoother user experience

• The current frame counter

• It is needed to know how much frames we processed

• The mlmodel

ARHandCaptureCoordinator
Variables declaration

• Now we can add three variables to the Coordinator

ARHandCaptureCoordinator
Initialization

• Modify the initializer

• It configures the model to use all computational units  
(CPU, GPU, Neural Engine)

• Take care of errors

ARHandCaptureCoordinator
Session updates

• Do you remember the ARSessionDelegate?

• It is time to use it

• We need just one function from it

• The one that handles the frames captured by ARKit

ARHandCaptureCoordinator
Session updates

• Add it at the end of the init

• We need to add many more things to use our artificial intelligence model

ARHandCaptureCoordinator
Requests hand pose

• We need to ask the iPhone that we want to detect human hand pose

• We ask for a maximum of 1 hand

• Plus we set the algorithm that we want to use

• There is only one algorithm for this task

•

ARHandCaptureCoordinator
Requests hand pose

• Our request is done. It’s time to submit and handle this task

• When performed it is possible that some errors occur

• We have to be ready to manage this situation

ARHandCaptureCoordinator
Retrieves hand pose

• As result we should obtain the hand pose. Why should?

• It can happen that not all frames have hands

• Exit if it happens

ARHandCaptureCoordinator
Retrieves hand pose

• Now we have to check if enough time is elapsed to perform a prediction

ARHandCaptureCoordinator
Retrieves hand pose

• Check check check

• It could appear annoying, but it save you and your clients from lost money
and patience

ARHandCaptureCoordinator
Retrieves hand pose

• Finally the prediction!

• It uses a multi dimensional array and returns a dictionary with a score for each
class

• It is the common behavior of any classifier

• Sure we are  
interested only on  
very confident  
estimation

ARHandCaptureCoordinator
Almost done

• Before to test it, we need to make coordinator accessible

ARHandCaptureCoordinator
Almost done

• Also, we have to notify that we want to use it

ARHandCaptureCoordinator
First review

TEST IT!

The output can be read from the terminal log

ARHandCaptureCoordinator
Communication

• It’s time that this view can start talking with the ContentView

• It is the main container where all components will be rendered

• Go up to the start of the ARViewContainer and add two Bindings

ARHandCaptureCoordinator
State/Binding and beyond

• Quick tip:

• State and Binding are two fundamental functionalities that make the view
able to update the state of its graphical elements from itself (using @State)
and inside another linked view (using @Binding)

• It will be more clear in the next steps

ARHandCaptureCoordinator
Communication

• It’s time that this view can start talking with the ContentView

• Add the following to lines (take care to add @Binding)

ARHandCaptureCoordinator
Communication

• We need to create an interface from ARViewContainer to the coordinator

• We need to add similar variables also in coordinator

ARHandCaptureCoordinator
Communication

• Modify the initializer

• Remove the override keyword and add variables

Before After

ARHandCaptureCoordinator
Communication

• Set these variables to pass from ARViewContainer to Coordinator

• Take care to insert the dollar symbol $

Before After

ARHandCaptureCoordinator
Communication

• Set their values in the session function

ContentView
Communication

• Come back to ContentView

• Start to style it

• Add the binding of ARViewContainer

• Add a text with label and score

ContentView
Communication

ContentView
Communication

• We want to increase a timer based on gestures

• It is needed to decrease the timer automatically

ContentView
Timer

• We have the algorithm to decrease the timer, but we  
does not have a timer interface

• We want to obtain  
a UI with found  
class and score  
on bottom and  
timer on top

ContentView
Timer

ContentView
Timer

• Just a number is not so common for a timer

• We can do better

• From 0

• To 00:00

• Just a number is not so common for a timer

• We can do better

• From 0

• To 00:00

ContentView
Timer

ContentView
Autoincrement Timer

• For now our timer is not so smart

• We can use the output of the  
Machine Learning model to add  
time automatically

• Add a new functionality when the  
confidenceLabel is updated

The End

Try the
application

Q&A

• Comments?

• Questions?

• Curiosity?

•

