Exercises

SC2_13 - Fourier Series.

1. Using the Symbolic Math Toolbox, check the relationships between real and complex Fourier coefficients.
2. Given the Fourier coefficients of $f(x)$ for the interval $[-\pi,+\pi]$, obtain the formulas to get the Fourier coefficients in the interval $[0,2 \pi]$ by applying the Shift Property to the Fourier coefficients in the interval $[-\pi,+\pi]$. Similarly for the interval $[0, T]$ w.r.t. $[-T / 2,+T / 2]$. What changes between the formulas?
3. Draw a suitable partial sum $S_{N}(x)$ of the Fourier Series $S(x)$, w.r.t. the interval $[1-\pi, 1+\pi]$, of the following function $f(x)$:

$$
f(x)= \begin{cases}-1 & x<1 \\ +1 & x>1\end{cases}
$$

What can be said about the convergence of the sequence $\left\{S_{N}(x)\right\}_{N}$ to $f(x)$ in the given interval, and how could we estimate the error $\left\|f(x)-S_{N}(x)\right\|_{2}$ numerically.
4. Approximate numerically the function $f(x)=\cos (2 x)-\sin (x)$ in the interval $[\pi / 2-2 \pi, \pi / 2+2 \pi]$ by means of Fourier partial sums of order 21, 41, 61 respectively. Approximate, again using the Fourier Series, its first and second derivatives, and compare the results with the derivatives of $f(x)$ computed symbolically.

