



#### L. Magistrale in IA (ML&BD)

# Scientific Computing (part 2 – 6 credits)

# prof. Mariarosaria Rizzardi

Centro Direzionale di Napoli – Bldg. C4

<u>room</u>: n. 423 – North Side, 4<sup>th</sup> floor

phone: 081 547 6545

email: mariarosaria.rizzardi@uniparthenope.it

## 920 - 2020 PEGLI STUD

- Windowing and aliasing.
- The Nyquist-Shannon Sampling Theorem.

#### Windowing effect

When performing spectral analysis of a sample from a physical phenomenon f(t), we are actually using an observation of the phenomenon obtained over a finite interval of time.

From a mathematical point of view, this process is equivalent to the multiplication of the function f(t), which describes the phenomenon, by a rectangular function w(t) (rectangular window function of width L); thus the "observed" function is:

$$g(t) = f(t) \cdot w(t)$$

$$F(v) = \mathscr{F}[f(t), v]$$

$$W(v) = \mathscr{F}[w(t), v]$$

so that the  $Fourier\ Transform\ G(v)$  of g(t) is then given by:

$$G(\mathbf{v}) = \mathscr{F}[g(t), \mathbf{v}] = \mathscr{F}[f(t), \mathbf{v}] * \mathscr{F}[w(t), \mathbf{v}] = F(\mathbf{v}) * W(\mathbf{v})$$

where F(v)\*W(v) represents the convolution product of F and W. Remember that W is a sinc().

#### Windowing effect: example



SCp2\_14c.4

Fourier Transform

(prof. M. Rizzardi)













Exercise: What happens for L=5?

#### **Aliasing effect**

When performing spectral analysis of a sample from a physical phenomenon f(t), we are actually using a discrete set of observations of the phenomenon obtained by equispaced time series.

From a mathematical point of view, this process is equivalent to the multiplication of the function f(t), which describes the phenomenon, by a Comb function  $\delta_{\mathbf{T}}(t)$  (of step  $\mathbf{T}$ ); thus the "observed" function is:

$$h(t) = f(t) \cdot \delta_{\mathbf{T}}(t) \qquad F(\mathbf{v}) = \mathscr{F}[f(t), \mathbf{v}] \\ \delta_{\mathbf{1/T}}(\mathbf{v}) = \mathscr{F}[\delta_{\mathbf{T}}(t), \mathbf{v}]$$

so that the **Fourier Transform** H(y) of h(t) is then given by:

$$H(\mathbf{v}) = \mathscr{F}[h(t), \mathbf{v}] = \mathscr{F}[f(t), \mathbf{v}] * \mathscr{F}[\delta_{\mathbf{T}}(t), \mathbf{v}] = F(\mathbf{v}) * \delta_{1/\mathbf{T}}(\mathbf{v}) / \mathbf{T}$$

where  $F(v)*\delta_{1/T}(v)/T$  represents the convolution product of F and  $\delta_{1/T}/T$ . Remember that the Fourier Transform of a comb function is still a comb function, but with a period equal to the reciprocal of the period of the original comb function.

#### Aliasing effect: example







original signal: f(t)=even decay e-|t|









$$F(\omega) = 2/(1+\omega^2) = FT \text{ of } f(t) = e^{-|t|}$$



$$\delta_{P}(\omega)$$
 = FT of  $\delta_{T}(t)$ , P = 1/T = 4



$$H(\omega) = F(\omega) * \delta_{1/T}(\omega)$$

Superposition of  $F(\omega)$ 

#### Aliasing effect: example (cont.)

Now, let's double the period T of the Comb Function  $\delta_{\mathbf{r}}$ 





pulse train  $\delta_{\tau}(t)$ , T = 0.5



original signal: f(t)=even decay e<sup>-|t|</sup>





$$F(\omega) = 2/(1+\omega^2) = FT \text{ of } f(t) = e^{-|t|}$$



$$\delta_{P}(\omega) = FT \text{ of } \delta_{T}(t), P = 1/T = 2$$



observed signal:  $h(t) = f(t) \cdot \delta_{\tau}(t)$ 

$$H(\omega) = F(\omega) * \delta_{1/T}(\omega)$$

Superposition of  $F(\omega)$ 

#### The Nyquist-Shannon **Sampling Theorem**

stated by Harry Nyquist and proved by Claude Shannon in 1948





w.r.t. the circular frequency v

If the FT of f(t), F(v)  $[\omega=2\pi v]$ , is such that

$$F(\mathbf{v})=0, |\mathbf{v}|>H/2$$
 (f is a b

 $(f ext{ is a band limited function})$  of bandwidth H

then the values of f at the sampling points  $t_k = k\Delta t$ , taken with frequency  $f_s = 1/\Delta t$ , if  $f_s > H$  (greater than twice the maximum frequency) allow f to be fully restored, i.e.:

$$f(t) = \sum_{k=-\infty}^{+\infty} f(k\Delta t) \operatorname{sinc}\left(\frac{t}{\Delta t} - k\right)$$

$$\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$$

normalized sinc:  $\sin(\pi x) / (\pi x)$ unnormalized sine  $\sin(x)/(x)$ 



sinc: "sine cardinal" function

new expansion basis

The **Aliasing Error** is governed by the Sampling Theorem.

The **Sampling Theorem** can be thought of as the conversion of an analog signal into a discrete form by taking the sampling frequency at least as twice the maximum frequency of the input analog signal.

This **Theorem** is the basis of digital recordings able to reach a degree of fidelity much higher than analog ones.

#### **Example: application of Sampling Theorem**

Let us consider two signals:  $s_5 = 2\cos(t) + \sin(5t)$  and  $s_1 = 2\cos(t) + \sin(t)$ .

We want to reconstruct  $S_5$  starting from a sequence of its equispaced samples. We sample  $S_5$  with a step  $h=\pi/2$  in the interval  $[-2\pi, +2\pi]$  getting 9 samples.



But  $s_5$  and  $s_1$  share these samples and we are not able to distinguish the two signals starting from these 9 samples, since the sampling rate does not satisfy the Sampling Theorem.

max freq in 
$$s_5$$
:  $\omega_{\text{max}} = 5$   $v = \omega/(2\pi)$ 

min useful freq for 
$$s_5$$
:  $f_s > 2v_{\text{max}} = 5/\pi$ 

According to the Sampling Theor, we should use a step:  $\Delta t < \pi/5$  but used step =  $\pi/2 > \pi/5$ 

In facts, if we reconstruct a signal by means of the Fourier Series starting from the 9 samples (whose frequency is  $f_s=2/\pi < 5/\pi=2v_{\rm max}$ ), we get  $S_1$  and not  $S_5$  (aliasing).



#### **Example: application of Sampling Theorem (cont.)**

Now we sample  $s_5$  with a step  $h=\pi/6 < \pi/5$ , that satisfies the Sampling Theor.: we get 25 samples.



The figure shows that some of the 25 samples of  $s_5$  no longer fall on  $s_1$ , so that we are able to distinguish the two signals starting from these 25 samples.

max freq in 
$$s_5$$
:  $\omega_{\text{max}} \neq 5$   $v = \omega/(2\pi)$ 

min useful freq for 
$$s_5$$
:  $f_s > 2v_{\text{max}} = 5/\pi$ 

According to the Sampling Theor. we should use a step:  $\Delta t < \pi/5$  and used step =  $\pi/6 < \pi/5$ 

In facts, if we reconstruct a signal by means of the Fourier Series starting from the 25 samples (whose frequency is  $f_s=6/\pi > 5/\pi=2\nu_{\rm max}$ ), now we get  $S_5$  (no aliasing).





Why, starting from the samples of  $s_5=2\cos(t)+\sin(5t)$  taken with frequency  $f_s=2/\pi<5/\pi=2v_{\rm max}$ , are we able to reconstruct the signal  $s_1=2\cos(t)+\sin(t)$  with angular frequency = 1, and not:  $s_k=2\cos(t)+\sin(kt)$ , k=2,3,4

with maximum frequency  $\omega = k < 5$ ?





### What is the Nyquist frequency of the following signal?



Check it by means the Sampling Theor. and display what happens with a lower frequency.