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Windowing effect

When performing spectral analysis of a sample from a physical
phenomenon f(t), we are actually using an observation of the

phenomenon obtained over a finite interval of time.

From a mathematical point of view, this process is equivalent to the
multiplication of the function f(t), which describes the phenome-
non, by a rectangular function w(t) (rectangular window function of

width L); thus the “observed” function is:

g =fn)-w(t)  EWZEU0

so that the Fourier Transform G(v) of g(t) is then given by:
G(v) = &# [ g(1),v] = F [ f(1),v]«F [W(t),v] = F(v) * W(v)

where F(v)«W(v) represents the convolution product of F and W.
Remember that Wisa sinc().
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Windowing effect: example
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the window has been shrunk

g w(t)

Windowing effect: example (cont.)
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secondary oscillations

increase in amplitude
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Example by means of Symbolic Math Toolbox

syms t real; f=exp(-abs(t)/2); figure; ezplot(f,[-10 10])
L=10; w=rectangularPulse(-L/2,+L/2,t); figure; ezplot(w,[-10 10])
figure; ezplot( f*w, [-10 10])

F=fourier(f); figure; h=ezplot(abs(F),[-10 10]); set(h, 'Color', k")
W=fourier(w); figure; h=ezplot(abs(W),[-10 10]); set(h,'Color','r")
G=fourier(f*w); figure; h=ezplot(abs(G),[-10 10]); set(h, 'Color','b")

X

F=
©
=
(]
©
r
€
e
=
| ©
c
=
»

)

spectrum in frequency domain

Exercise: What happens for L=5?
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Aliasing effect

When performing spectral analysis of a sample from a physical
phenomenon f(t), we are actually using a discrete set of observations

of the phenomenon obtained by equispaced time series.

From a mathematical point of view, this process is equivalent to the
multiplication of the function f(t), which describes the phenomenon,

by a Comb function 8.(t) (of step T); thus the “observed” function is:

h(t) = f(t) : 6"[‘(t) éFl(/:()szﬁ-@[%]f%)T?jt]) V]

so that the Fourier Transform H(v) of h(t) is then given by:
H(v) = [ h(1),v] = F [ [(1),v]+F [8:(1),v] = F(V) * &1(v)/T

where F(v)# §,+(v)/T represents the convolution product of F and

&,/ T. Remember that the Fourier Transform of a comb function is still a comb

function, but with a period equal to the reciprocal of the period of the original
comb function.
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Aliasing effect: example $
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Superposition of F(w)
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Aliasing effect: example (cont.) g
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Superposition of F(w)




The Nyquist-Shannon 2
® NI
Sampling Theorem 3
stated by Harry Nyquist and proved by Claude Shannon in 1948
w.I.t. the circular frequency v
If the FT of f(t), F(v) |[@=2mv], is such that
O\ _ (f is a band limited function
F(V)“"O* lVl >H/2 of bandwidth H) .
then the values of f at the sampling points {,=kAt, taken with| | 5
frequency f.=1/At, if f.> H (greater than twice the maximum fre- 8
quency) allow f to be fully restored, i.e.: 5
+00 =
it ‘ l ©
f(t)= k;Of(kAt) sinc (A_t_ k)
sinc(x) = L < =
L £
normalized sinc: sin(mx)/(mx) = 7 : | SInC: f
unnormalized sinc sin(x)/(x) * ' “Sine Cardinal” function \gj
new expansion basis




The Aliasing Error is governed by the
Sampling Theorem.

The Sampling Theorem can be thought of as
the conversion of an analog signal into a
discrete form by taking the sampling frequency
at least as twice the maximum frequency of the
input analog signal.

This Theorem is the basis of digital recordings
able to reach a degree of fidelity much higher
than analog ones.
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Example: application of Sampling Theorem f
. . I
Let us consider two signals: S5=2COS(t)+SIn(5t) and S1=2COS(I)+SIH(Z). )t
V)
We want to reconstruct S5 starting from a sequence of its equispaced samples.
We sample SS W|th e step h—Tc/2 in the interval [-2m,+27] getting 9 samples.
d But 55 and s, share these samples and we are
R not able to distinguish the two signals star-
1 ting from these 9 samples, since the sampling
rate does not satisfy the Sampling Theorem.
ot ] g
_ max freq in S5: @,,= 5 I:> v=0/(2r) S
min useful freq for ss: f,>2v, . =5/n I:> £
L According to the Sampling Theor. we should use || 5
astep: At <n/5 but usedstep=w/2>mn/5 |
In facts, if we reconstruct a signal by ~
means of the|Fourier Seriesistarting from- - = = = = = = > %
the 9 samples (whose frequency is ;"
[=2/n<5/n=2v,,,), we get §, and not S s

(aliasing).




Example: application of Sampling Theorem (cont.) |
|
Now we sample s5 with a step h=n/6 <mt/5, that satisfies the Sampling Theor.: 3
we get 25 samples.
i The figure shows that some of the 25 samples
2} of s5 no longer fall on s,, so that we are able to
o distinguish the two signals starting from these
| 25 samples.
£
Al max freq in Ss: @ =3 I:{) v=0/(2r) S
min useful freq forss: f,>2v, . =5/n I:> £
R N According to the Sampling Theor. we should use || 5
astep: At <n/5 and usedstep=7/6<n/5 ‘-
ot ﬁ ' ' Iﬂ ' - .
In facts, if we reconstruct a signal by 7 "'\\\ ‘W‘\' Al =
\ TR (/1 B
means of the|Fourier Series|starting from- ~'r - fi~ - —ﬁ! ’ \U”a '.1 I
the 25 samples (whose frequency is °| "\‘a\ ;"y' \ ;\&4‘ ' i
T WY \\. | Y : ;
f;:6/TC > S/thzvmax)l nOW We gEt SS (no L k\}*q ,—@[t}2"ms[t}+5n[§"t}{\\u ’!/ | qg-
aliasing). I -
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