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Dereverberation
Speech enhancement

Room aware sound reproduction Room Geometry estimation
[Dokmanic et al. PNAS 2013]
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Single Input Multi Ouput 
Blind Channel Identification

TX signal
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The Cross – Relation Identity (2) 

Toeplitz

In absence of noise

Shift to matrix form
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Singular value problem  [Tong et al., 1994]: 
solution given by the singular vector corresponding to the smallest singular value of

[Tong et al., 1994]: L. Tong, G. Xu and T. Kailath. «Blind identification and equalization based on second order statistics: a 

time domain approach», IEEE Trans. On Information Theory, vol. 40, no. 2, pp.340-349, Mar. 1994..

To avoid the
trivial solution
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Drawbacks:
- Channels  must be co-prime
- RIR length must be known
- Sensitivity to «holes» in the signal spectrum

Singular value problem  [Tong et al., 1994]: 
solution given by the singular vector corresponding to the smallest singular value of

[Tong et al., 1994]: L. Tong, G. Xu and T. Kailath. «Blind identification and equalization based on second order statistics: a 

time domain approach», IEEE Trans. On Information Theory, vol. 40, no. 2, pp.340-349, Mar. 1994..

To avoid the
trivial solution
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Sparsity holds for direct path and 
early reflections

Reconstruction of  RIR direct path and early reflections is sufficient for room geometry 
reconstruction and has proven to work also in speech enhancement [Yu et al 2012]  and 
dereverberation [Lin et al, 2007].

[Lin et al, 2007]: Lin, Yuanqing, et al. "Blind channel 
identification for speech dereverberation using l1-norm sparse 
learning." Advances in Neural Information Processing Systems. 
2007.

[Yu et al 2012]: Yu, Meng, et al. "Multi-Channel Regularized Convex Speech 
Enhancement Model and Fast Computation by the Split Bregman Method." Audio, 
Speech, and Language Processing, IEEE Transactions on 20.2 (2012): 661-675.

Intensity

Direct path

Early reflections

Reverberation

Time
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NP- hard

[Kowalczyk et al, 2013]: Kowalczyk, Konrad, et al. "Blind System Identification Using Sparse Learning for 

TDOA Estimation of Room Reflections." Sig. Proc. Letters, IEEE20.7 (2013): 653-656.

[Kowalczyk et al, 2013] 
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Drawbacks:
- Non-convex problem due to the quadratic equality constraint
- L1 norm penalizes larger coefficients more: the solution is not in 

general the same of L0 norm.

NP- hard

[Kowalczyk et al, 2013]: Kowalczyk, Konrad, et al. "Blind System Identification Using Sparse Learning for 

TDOA Estimation of Room Reflections." Sig. Proc. Letters, IEEE20.7 (2013): 653-656.

[Kowalczyk et al, 2013] 
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constraint
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[Lin et al 2007]: Lin, Yuanqing, et al. "Blind sparse-nonnegative (BSN) channel identification for acoustic time-

difference-of-arrival estimation." Applications of Signal Processing to Audio and Acoustics, 2007 IEEE Workshop on. IEEE, 
2007.

Convex formulation

[Lin et al 2007]
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[Lin et al 2007]: Lin, Yuanqing, et al. "Blind sparse-nonnegative (BSN) channel identification for acoustic time-

difference-of-arrival estimation." Applications of Signal Processing to Audio and Acoustics, 2007 IEEE Workshop on. IEEE, 
2007.

Convex formulation

[Lin et al 2007]
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Drawbacks: 
- amplitude distortion, peak of the anchor overly enhanced
- does not solve the L1 penalty limitations 

[Lin et al 2007]: Lin, Yuanqing, et al. "Blind sparse-nonnegative (BSN) channel identification for acoustic time-

difference-of-arrival estimation." Applications of Signal Processing to Audio and Acoustics, 2007 IEEE Workshop on. IEEE, 
2007.

Convex formulation

[Lin et al 2007]
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Convex solution, no distortion due to anchor 

BUT L1 norm appears both as a constraint and a penalty: 

no more sparsity - inducing effect !!

L1 equality constraint
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Toy problem in two dimensions (1)

Quadratic cost function 
without penalties

Quadratic cost function 
without L1 penalty
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Solve a sequence of sub - problems for z = 1, ... Z : 
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Weight update rule

Solve a sequence of sub - problems for z = 1, ... Z : 

Smaller elements of vector are more penalized than bigger ones.
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Weighted L1 penalty Quadratic cost function 
with weighted L1 penalty
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How to initialize          ?

Use the solution of the anchor – constrained problem 

At convergence                            ,         therefore

Weighted L1 norm is 
equivalent to L0 norm 
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Spurious peaks are gradually 
eliminated from the 
estimated RIR

Even if non–negativity is not 
perfect in the GT RIR, the 
estimated RIR well 
preserves peaks position and 
energy



Experiments
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- Simulated room of 5 x 4 x 6 m

- 2 microphones and a source randomly placed 

- RIRs simulated with the image method [Allen & Berkley, 1979]

- Synthetic and real signals: white noise, rustle, male voice

- Variable SNR: 0, 6, 14, 20, 40 dB

- 50 Monte Carlo simulations for each SNR

[Allen & Berkley, 1979]: Allen, Jont B., and David A. Berkley. "Image method for efficiently simulating small‐room 

acoustics." The Journal of the Acoustical Society of America 65.4 (1979): 943-950.
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Metrics of evaluation
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Average peak 
position mismatch

Average 
percentage of 
unmatched peaks

Peak position 
accuracy over the 
inliers

Percentage of outliers
(> 20 samples)

Metrics evaluated on the first (sparse) part of the RIR
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• The proposed method yields a convex, computationally efficient formulation 
for the blind sparse non-negative RIR estimation problem.

• The iterative weighted L1 penalty fairly approximates the optimal L0 penalty.

• The proposed method outperforms current approachs in almost all SNR 
conditions and for different sound sources, both synthetic and real.

• Future works will assess the method effectiveness on a set of applications like 
speech enhancement and room geometry reconstruction.


