Exercises

SC2_11 - Best Approximation in the $\|\cdot\|_{2}$ and Linear Least Squares.

1. Compare graphically the following best linear approximations in $\|\cdot\|_{2}$ to the function $f(x)=x^{3}$ on $[-1,+1]$:

- $\quad f_{1}(x)$: best approx. in the subspace $\Pi_{1}[-1,+1]=\operatorname{span}\{1, x\}$, of at most $1^{\text {st }}$ degree algebraic polynomials on the interval $[-1,+1]$;
- $\quad f_{2}(x)$: best approx. in the subspace $\boldsymbol{Q}_{1}[-1,+1]=\operatorname{span}\left\{1, e^{i x}\right\}$, of at most $1^{\text {st }}$ degree trigonometric polynomials on the interval $[-1,+1]$;
- $\quad f_{3}(x)$: best approx. in the subspace $\boldsymbol{P}_{2}[-1,+1]=\operatorname{span}\{1, \cos (x), \sin (x)\}$, of at most $2^{\text {nd }}$ degree trigonometric polynomials on the interval $[-1,+1]$;
Comment on the results.
Remember that, for a generic interval $[\alpha, \beta]$, the scalar product of f and g is defined as $\langle f, g\rangle=\int_{\alpha}^{\beta} \overline{f(x)} g(x) \mathrm{d} x$.

2. Find the best linear approximations in $\|\cdot\|_{2}$ to the function $f(x)=x^{3}$ in the subspaces $\boldsymbol{Q}_{1}[-\pi,+\pi]=\operatorname{span}\left\{1, e^{i x}\right\}$, of at most $1^{\text {st }}$ degree trigonometric polynomials, and $\boldsymbol{P}_{2}[-\pi,+\pi]=\operatorname{span}\{1, \cos (x), \sin (x)\}$, of at most $2^{\text {nd }}$ degree trigonometric polynomials, on the interval $[-\pi,+\pi]$. Compare the results with each other and with those of exercise 1 .
3. By means of MATLAB Symbolic Math Toolbox check that, if X_{LS} represents the set of Least Squares (LS) solutions for an incompatible system, then $\min \left\|X_{\mathrm{LS}}\right\|_{2}$ is reached by the LS solution returned by $\operatorname{pinv}()$. The problem is given below.
```
u=[\begin{array}{llll}{1}&{1}&{1}&{1}\end{array}]'; v=[\begin{array}{llll}{1}&{-1}&{1}&{-1}\end{array}\mp@subsup{]}{}{\prime};A=\mp@subsup{u}{*}{*}\mp@subsup{v}{}{\prime}; A=A(:,1:3); b=[\begin{array}{llll}{1}&{0}&{1}&{0}\end{array}]';
disp([rank(A) rank([A b])])
1 2 % A*x=b: incompatible system
disp(size(A)) % rank(A)=1 (non-max)
    4 3
```

4. Find in \mathbb{R}^{2} a circle Γ, of equation: $x^{2}+y^{2}+\alpha x+\beta y+\gamma=0$, which is the best fit of a random sample of N data, obtained as in the following MATLAB box. What is the least 2-norm (min $\|\cdot\|_{2}$) solution? Is it unique? If so, why?
```
% N=,100,150,200 number of samples
X0=0.5; Y0=0.5; r0=1; N=50;
t=linspace(-pi,pi,N)';
% exact \Gamma
Xi=X0+r0* cos(t);
Yi=Y0+r0*sin(t);
perc=0.15; % noise percentage
% perturbed \Gamma
xi=Xi+perc*(2*rand(N,1)-1);
yi=Yi+perc*(2*rand(N,1)-1);
plot(xi,yi,'ob'); axis equal;
hold on; plot(Xi,Yi,'r')
```


5. Solve, by means of the Linear Least Squares method, the following fitting problem (wind tunnel experiment):
$\left.\begin{array}{ll}\text { speed } v(m / s) & v=\left[\begin{array}{lllllll}10 & 20 & 30 & 40 & 50 & 60 & 70 \\ \hline\end{array}\right] \\ \text { force } F(N) & F=\left[\begin{array}{lllllll}25 & 70 & 380 & 550 & 610 & 1220 & 830\end{array}\right. \\ 1450\end{array}\right]$ ';
whose (non-linear) mathematical model is the power function: $y=f(x)=a x^{b}, a, b \in \mathbb{R}$.
6. Find, by means of Symbolic Math Toolbox, the best approx. w.r.t. $\|\cdot\|_{2}$ of n real numbers $\left\{a_{k}\right\}_{k=1, \ldots, n}$ (setting a value for n). What is the best approx. found?
7. Find the Least Squares line to the following data sets and comment on the obtained results:

- $\mathrm{A}=\{(1,1),(1,2),(1,3),(1,5)\}$
[hint: use the eq. $a x+b y+c=0$];
- $\mathrm{B}=\{(1,1),(-1,2),(1,3),(-1,5)\}$
[hint: use the eq. $y=m x+q$];

8. The file salaries.csv (downloadable from the course page on the eLearning platform) contains data concerning 398 NBA (National Basketball Association) players in the 2015-2016 season: Name, Rebounds, Fouls, Points, Salary (as per contract). In order to load file data and to store them in a matrix, use the following MATLAB code:

```T=readtable('salaries.csv') T = 398\times5 table Name```	Rebounds	Fouls	Points	Salary
\{'Aaron Brooks' \}	101	132	491	$2.7 e+06$
\{'Aaron Gordon' \}	507	153	719	$4.3513 e+06$
\{'Aaron Harrison' \}	15	10	18	8.7464e+05
\{'Adreian Payne' \}	111	77	132	$2.0222 e+06$
\{'Al Horford' \}	596	163	1249	$2.654 \mathrm{e}+07$
M=table2array ( $\mathrm{T}(\mathrm{:} \mathrm{}, \mathrm{2:} \mathrm{end} \mathrm{)} \mathrm{)} \mathrm{;}$	:	:	:	:

We want to find the best approx. in $\|\cdot\|_{2}$ of the data, by minimizing the following functional:

$$
J_{L S}=\sum_{k=1}^{398}\left[c_{1}(\text { Rebounds })_{k}+c_{2}(\text { Fouls })_{k}+c_{3}(\text { Points })_{k}-(\text { Salary })_{k}\right]^{2}
$$

Compute the residue norm of the LS solutions and the elapsed time (tic; ... $\mathrm{T}=\mathrm{toc}$ ), and compare the results obtained by means of the following algorithms:

- MATLAB backslash operator (<br>).
- Resolution of Normal Equations.
- QR factorization.
- SVD factorization.

