Exercises

SC2＿10－Principal Component Analysis．

1．Write a MATLAB function to implement the＂Incremental PCA algorithm＂（where the maximum eigenvalue and its eigenvector are computed by a function implementing the＂power method＂）． Compare its results to those returned by the MATLAB pca（）function．Compute also the function execution time for the＂Incremental PCA algorithm＂by means of：tic 〈code to be evaluated〉 $\mathrm{T}=$ toc， and compare it to the time required by the pca（）function．The following code shows how to generate the random data（from a statistical point of view）and how to use the functions tic ．．．T＝toc for the elapsed time．

```
N=50; % or more (number of samples)
% mean (mu) and covariance matrix (Sigma) of population
mu=[3 1 2 0]; Sigma=[1 . 2 . 7 .3; . 2 1 0 .6; . 7 0 1 .5; . 3 . 6 . 5 1];
X=mvnrnd(mu,Sigma,N); % sample from a multivariate normal distribution N( }\mu,\Sigma
    tic
    [basis,comp,lambda]=pca(X); % PCA of sample matrix
T=toc;
fprintf("Elapsed time of pca() on %d samples: %g\n", N,T)
```

2．For the same samples as in the previous exercise，implement the $P C A$ algorithm by computing eigenvalues and eigenvectors by means of the following MATLAB functions：
－pca（）：PCA applied to the data matrix，to the centered data matrix and to the standardized matrix；
－$\quad \operatorname{svd}():$ SVD factorization of the centered matrix and of the standardized matrix；
－eig（）：eigenvalues／eigenvectors of the covariance matrix and of the correlation matrix； and compare their results．
Also compare their execution times by means of：tic 〈code to be evaluated〉 T＝toc．
3．Implement the＂Eigenfaces＂algorithm for face recognition using the MATLAB pca（）function． For the exercise data（the face image database）download the db＿400faces＿112x92＿col＿uint8．mat file from the course page on the e－Learning platform．

4．Implement the＂Eigenfaces＂algorithm by computing eigenvalues and eigenvectors by means of the following MATLAB functions：
－pca（）：PCA applied to the data matrix，to the centered data matrix and to the standardized matrix；
－$\quad \operatorname{svd}():$ SVD factorization of the centered matrix and of the standardized matrix；
－eig（）：eigenvalues／eigenvectors of the covariance matrix and of the correlation matrix； and compare their results．
Also compare their execution times by means of：tic \langle code to be evaluated $\rangle \mathbf{T}=$ toc．
5．Compute and display the regression line of y on x ，and that of x on y for the following X data．Also compute and display the value of the functional $J_{L S}(a, b)$ ．

```
N=20; % or more (number of samples)
% mean (mu) and covariance matrix (Sigma) of population
mu=[1 2]; Sigma=[1 . 2; . 2 .7];
X=mvnrnd(mu,Sigma,N); % sample from a multivariate normal distribution N( }\mu,\Sigma
```

6. Compute and display the regression plane of z on x, y, that of x on y, z and that of y on x, z for the following X data. Also compute and show the values of the three corresponding functionals $J_{L S}(a, b, c)$.
```
N=20; % or more (number of samples)
% mean (mu) and covariance matrix (Sigma) of population
mu=[3 1 2]; Sigma=[1 .2 .8; . }2\mathrm{ 1 0; . }80\mathrm{ 1];
X=mvnrnd(mu,Sigma,N); % sample from a multivariate normal distribution N( }\mu,\Sigma
```

7. For the same data as in the previous exercise, compute and display the PCA plane (spanned by the first two principal directions) and the Least Squares plane of z on x, y. What optimal condition does each plan satisfy with respect to the samples? How to check it?
