Exercises

SC2_09 - Eigenvalues and eigenvectors.

1. Why, given a square matrix \boldsymbol{A}, are the following statements equivalent?

- \boldsymbol{A} is invertible;
- $\quad \operatorname{det}(\boldsymbol{A}) \neq 0$;
- $\lambda=0$ is not an eigenvalue of \boldsymbol{A}.

2. By means of the Symbolic Math Toolbox, prove that if \boldsymbol{A} is a matrix of size 2×2 and $\boldsymbol{B}=2 \boldsymbol{A}-I_{2}, \boldsymbol{A}$ and \boldsymbol{B} have the same eigenvectors. What is the connection between the eigenvalues of \boldsymbol{A} and those of \boldsymbol{B} ?
3. Find eigenvalues and eigenspaces of the 3D orthogonal reflection across the line $r=\operatorname{span}\left\{(2,1,1)^{\top}\right\}$. Display such eigenspaces.
4. By means of the Symbolic Math Toolbox, find eigenvalues and eigenspaces of the 3D orthogonal reflection across a generic line $r=\operatorname{span}\{\underline{\boldsymbol{a}}\}$, where $\underline{\boldsymbol{a}}=\left(a_{1}, a_{2}, a_{3}\right)^{\top}$.
[Hint: use the matrix form of the transformation.]
5. By means of the Symbolic Math Toolbox, find real eigenvalues and eigenspaces of 3D rotations around x, y, z axes.
6. Are diagonalizable the following transformations? Explain your answer. Use both the Symbolic Math Toolbox and numerical MATLAB to solve the exercise.

- The 2D horizontal shear by a factor $r=2$;
- The 2D rotation by 90°;
- The mapping induced by the matrix: $\mathrm{A}=[21 ;-98]$;

- The 2D orthogonal projection onto the line $r=\operatorname{span}\left\{(2,1)^{\top}\right\}$.

7. Compute "efficiently" A^{100}, where $A=[.8$.3; .2 .7].
8. Find those points that remain unchanged after applying the mapping t_{A} induced by the matrix: $A=[0.60 .8 ; 0.8-0.6]$. Also find the lines of equation $y=m x$ that remain unchanged after the application of t_{A}. What 2D geometric transformation does t_{A} correspond to?
9. Factorize into elementary mappings the transformation induced by the matrix $A=\left[\begin{array}{lll}3 & -1 ;-1 & 3\end{array}\right]$ starting from matrices of its diagonalization.
10. Write a MATLAB function to detect the number of connected components in a graph, given on input its adjacency matrix. Download the graph2.mat file containing an adjacency matrix, or use another adjacency matrix of your choice.
