Course of
 "Automatic Control Systems" 2022/23

 Example of controller design

 Example of controller design}

Prof. Francesco Montefusco
Department of Economics, Law, Cybersecurity, and Sports Sciences
Università degli Studi di Napoli Parthenope
francesco.montefusco@uniparthenope.it
Team code: uxbsz19

Example of controller design

A Let us consider a closed loop system in the form

where

$$
\begin{gathered}
H(s)=\frac{0.1}{1+0.2 s} \\
G(s)=\frac{2(1+s)}{(1+10 s)(1+s \tau)}
\end{gathered}
$$

with $\tau \in\left[\begin{array}{ll}0 & 0.04\end{array}\right]$

Requirements

Let us consider the following requirements:

1. $e_{\infty r} \leq 5 \%$ for a reference signal $r(t)=r_{0} t \cdot 1(t)$
2. $e_{\infty r} \leq 0.05$ for multi-frequency disturbs in the range $\left[\begin{array}{ll}0.01 & 0.5\end{array}\right] \mathrm{rad} / \mathrm{s}$
3. $e_{\infty r} \leq 0.1$ for multi-frequency reference signal in the range $\left[\begin{array}{ll}0 & 1\end{array}\right] \mathrm{rad} / \mathrm{s}$
4. Attenuation $\geq 20_{d b}$ for multi-frequency noise in the range [50 100$] \mathrm{rad} / \mathrm{s}$
5. Phase margin $\varphi_{m}>30^{\circ}$

Example of controller design

A Making use of the block diagrams algebra, the closed loop scheme can be equivalently written in the form

where

$$
E(s)=H^{-1}(s) \tilde{E}(s)
$$

Steady-state spec. for polynomial reference

1. $e_{\infty r} \leq 5 \%$ for a reference signal $r(t)=r_{0} t \cdot 1(t)$

A Steady-state requirement for polynomial reference signal of order 1.
A The subscript r in $\boldsymbol{e}_{\infty \boldsymbol{r}}$ indicates that the requirement considers the relative steadystate error (independent on the amplitude of the reference signal r_{0})

A To assure a finite steady state error for a polynomial signal of order 1 it is necessary that $F(s)$ is of type 1 , that is $F(s)$ should have a pole in the origin.

A Taking into account that the plant transfer function $G(s)$ doesn't contain poles in the origin, the steady-state part of the controller is

$$
K^{\prime}(s)=\frac{k_{0}}{s}
$$

where k_{0} is chosen so that

$$
\lim _{s \rightarrow 0} s \frac{1}{1+K^{\prime}(s) G(s) H(s)} \frac{1}{s^{2}}<0.05 \quad \rightarrow \quad \mathrm{k}_{0} \geq 100
$$

Steady-state spec. for multi-frequency disturbs

2. $\boldsymbol{e}_{\infty r} \leq 0.05$ for multi-frequency disturbs in the range $\left[\begin{array}{ll}0.01 & 0.5\end{array}\right] \mathrm{rad} / \mathrm{s}$

A Steady-state requirement for multi-frequency disturbs
A It implies that

$$
|S(s)|=\left|\frac{1}{1+K^{\prime}(s) G(s) H(s)}\right| \leq 0.05 \rightarrow\left|\frac{1}{F(s)}\right| \leq 0.05 \rightarrow|F(s)|_{d b} \geq 26_{d b}
$$

$26_{d b} \overbrace{0.5}^{|F(j \omega)|_{d b}}$

Steady-state spec. for multi-frequency reference

3. $e_{\infty r} \leq 0.1$ for multi-frequency reference signal in the range $\left[\begin{array}{ll}0 & 1\end{array}\right] \mathrm{rad} / \mathrm{s}$

A Steady-state requirement for multi-frequency reference
A It implies that

$$
|S(s)|=\left|\frac{1}{1+F(s)}\right| \leq 0.1 \quad \rightarrow\left|\frac{1}{F(s)}\right| \leq 0.1 \quad \rightarrow \quad|F(s)|_{d b} \geq 20_{d b}
$$

(

Steady-state spec. for multi-frequency noise

4. Attenuation $\geq 20_{d b}$ for multi-frequency noise in the range $\left[\begin{array}{cc}50 & 100\end{array}\right] \mathrm{rad} / \mathrm{s}$

A Steady-state requirement for multi-frequency noise

A -It implies that $|T(s)|=\left|\frac{F(s)}{1+F(s)}\right|_{d b} \leq-20_{d b} \quad \rightarrow \quad|F(s)|_{d b} \leq-20_{d b}$

Transient requirements

5. $\varphi_{m}>30^{\circ}$

A The transient performance considers only the overshoot of the step response
A The crossing frequency of $F(s)$ is imposed by the multi-frequency requirements

A However, looking at the forbidden zones, it is reasonable to place the crossing frequency $\omega_{c} \in\left[\begin{array}{ll}10 & 20\end{array}\right] \mathrm{rad} / \mathrm{s}$

Controller design

A Design the controller $K(s)$ so that the open loop function $F(s)=K(s) G(s)$ satisfies the previous requirements

A The controller will be in the form

$$
K(s)=K^{\prime}(s) \cdot K^{\prime \prime}(s)
$$

where
$\not K^{\prime}(s)$ have been designed according to the steady-state requirements concerning polynomial reference and/or disturbs

$$
K^{\prime}(s)=\frac{100}{s}
$$

* $K^{\prime \prime}(s)$ have to be designed according to the steady-state multi-frequency requirements and the transient requirements

Step2: Controller design

A In order to design $K^{\prime \prime}(s)$, let us consider the uncertain transfer function

$$
F^{\prime}(s)=K^{\prime}(s) H(s) G(s)=\frac{20(1+s)}{s(1+10 s)(1+s \tau)(1+0.2 s)}
$$

with $\tau \in\left[\begin{array}{ll}0 & 0.04\end{array}\right]$.
A The transfer function $F^{\prime}(s)$ contains an uncertain pole whose breaking point moves from $25 \mathrm{rad} / \mathrm{s}$ to $+\infty$.

Analysis of the uncertain pole

A Taking into account that the desired crossing frequency $\omega_{c} \in\left[\begin{array}{ll}10 & 20\end{array}\right] \mathrm{rad} / \mathrm{s}$, the effects of the uncertain pole on $F(s)$ can be summarized as:

A It doesn't modify the crossing frequency ω_{c} for any values of τ
A It causes a phase leg in $\omega=\omega_{c}$ and hence it reduces the phase margin. The maximum phase lag is due to $\tau=0.04$.

A It attenuates the magnitude in the interval $\left[\begin{array}{ll}50 & 100\end{array}\right] \mathrm{rad} / \mathrm{s}$ when $\tau \in$ [0.02 0.04] and hence it makes easier to satisfy the constraint on the multifrequency noise

A In order to design a robust controller w.r.t. the variation of the uncertain pole, we will assume:

A $\tau=0.04$ when we evaluate the phase margin
A $\tau=0$ when we evaluate the magnitude Bode plot of $F(s)$

Controller design

ARTHENO
A Magnitude Bode plot of $F^{\prime}(s)=\frac{20(1+s)}{s(1+10 s)(1+0.2 s)}$

Controller design

A In order to verify the multi-frequency requirements, we need:
A Amplification $\geq 8_{d b}$ in $\omega=0.5 \mathrm{rad} / \mathrm{s}$
A Amplification $\geq 12_{d b}$ in $\omega=1 \mathrm{rad} / \mathrm{s}$
With a degree of freedom related to a possible amplification $\leq 28_{d b}$ in $\omega=50$ $\mathrm{rad} / \mathrm{s}$

A Assuming a crossing frequency $\omega_{c} \cong 10 \mathrm{rad} / \mathrm{s}$, the current phase margin is

$$
\varphi_{m}=180+\varphi_{c}=180+(-90-90-60-30+90)=0
$$

 -25

Controller design

A The controller $K^{\prime \prime}(s)$ can be easily defined by

$$
K^{\prime \prime}(s)=\frac{(1+10 s)}{(1+s)}
$$

A In this way we have

$$
\begin{aligned}
& * 13_{d b} \text { magnitude amplification in } \omega=0.5 \mathrm{rad} / \mathrm{s} \\
& * 17_{d b} \text { magnitude amplification in } \omega=1 \mathrm{rad} / \mathrm{s} \\
& * \text { Crossing frequency } \omega_{c} \cong 10 \mathrm{rad} / \mathrm{s} \\
& * \text { NO phase anticipation in } \omega=10 \mathrm{rad} / \mathrm{s} \quad\left(\varphi_{m} \cong 0\right) \\
& * 20_{d b} \text { magnitude amplification in } \omega=50 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

A Finally, we can add a zero with a breaking frequency $\omega=20 \mathrm{rad} / \mathrm{s}$ to assume a phase $\operatorname{margin} \varphi_{m} \cong 30$ without intersecting the noise forbidden zone.

Controller design

A The controller is in the form

$$
K(s)=K^{\prime}(s) K^{\prime \prime}(s)=\frac{100(1+10 s)(1+0.05 s)}{s(1+s)}
$$

Bode plot of $\boldsymbol{F}(s)$

